Exact Neumann boundary controllability for second order hyperbolic equations
Liu, Weijiu ; Williams, Graham
Colloquium Mathematicae, Tome 78 (1998), p. 117-142 / Harvested from The Polish Digital Mathematics Library

Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in L2(Ω)×(H1(Ω))' and we derive estimates for the control time T.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210545
@article{bwmeta1.element.bwnjournal-article-cmv76z1p117bwm,
     author = {Weijiu Liu and Graham Williams},
     title = {Exact Neumann boundary controllability for second order hyperbolic equations},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {117-142},
     zbl = {0896.93004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p117bwm}
}
Liu, Weijiu; Williams, Graham. Exact Neumann boundary controllability for second order hyperbolic equations. Colloquium Mathematicae, Tome 78 (1998) pp. 117-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p117bwm/

[000] [1] R. F. Apolaya, Exact controllability for temporally wave equations, Portugal. Math. 51 (1994), 475-488. | Zbl 0828.49008

[001] [2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065. | Zbl 0786.93009

[002] [3] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Evolution Problems I, Springer, Berlin, 1992. | Zbl 0755.35001

[003] [4] J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969. | Zbl 0186.40901

[004] [5] V. Komornik, Exact controllability in short time for the wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 153-164. | Zbl 0672.49025

[005] [6] V. Komornik, Contrôlabilité exacte en un temps minimal, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), 223-225. | Zbl 0611.49027

[006] [7] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985. | Zbl 0588.35003

[007] [8] I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl. 65 (1986), 149-192. | Zbl 0631.35051

[008] [9] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Contrôlabilité exacte, Masson, Paris, 1988.

[009] [10] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vols. I and II, Springer, Berlin, 1972. | Zbl 0227.35001

[010] [11] M. M. Miranda, HUM and the wave equation with variable coefficients, Asymptotic Anal. 11 (1995), 317-341. | Zbl 0848.93031

[011] [12] J. E. Mu noz Rivera, Exact controllability: coefficient depending on the time, SIAM J. Control Optim. 28 (1990), 498-501. | Zbl 0695.93008

[012] [13] D. L. Russell, Exact boundary value controllability theorems for wave and heat processes in star-complemented regions, in: Differential Games and Control Theory, E. O. Roxin, P. T. Liu, and R. L. Sternberg (eds.), Lecture Notes in Pure Appl. Math. 10, Marcel Dekker, New York, 1974, 291-319.