Some stability results for asymptotic norming properties of Banach spaces
Basu, Sudeshna ; Rao, T.
Colloquium Mathematicae, Tome 78 (1998), p. 271-284 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210542
@article{bwmeta1.element.bwnjournal-article-cmv75z2p271bwm,
     author = {Sudeshna Basu and T. Rao},
     title = {Some stability results for asymptotic norming properties of Banach spaces},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {271-284},
     zbl = {0897.46005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p271bwm}
}
Basu, Sudeshna; Rao, T. Some stability results for asymptotic norming properties of Banach spaces. Colloquium Mathematicae, Tome 78 (1998) pp. 271-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p271bwm/

[000] [1] P. Bandyopadhyay and S. Basu, On a new asymptotic norming property, ISI Tech. Report No. 5/95, 1995.

[001] [2] P. Bandyopadhyay and A. K. Roy, Some stability results for Banach spaces with the Mazur Intersection Property, Indag. Math. 1 (1990), 137-154. | Zbl 0728.46020

[002] [3] D. Chen and B. L. Lin, Ball separation properties in Banach spaces, preprint, 1995.

[003] [4] D J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.

[004] [5] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.

[005] [6] G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220. | Zbl 0453.46018

[006] [7] G. Godefroy, Applications à la dualité d'une propriété d'intersection de boules, Math. Z. 182 (1983), 233-236. | Zbl 0488.46014

[007] [8] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993. | Zbl 0789.46011

[008] [9] Z. Hu and B. L. Lin, On the asymptotic norming properties of Banach spaces, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 136, Marcel Dekker, 1992, 195-210. | Zbl 0834.46007

[009] [10] Z. Hu and B. L. Lin, Smoothness and asymptotic norming properties in Banach spaces, Bull. Austral. Math. Soc. 45 (1992), 285-296. | Zbl 0808.46024

[010] [11] Z. Hu and B. L. Lin, RNP and CPCP in Lebesgue Bochner function spaces, Illinois J. Math. 37 (1993), 329-347. | Zbl 0839.46010

[011] [12] Z. Hu and M. A. Smith, On the extremal structure of the unit ball of the space C(K,X)*, in: Proc. Conf. on Function Spaces (SIUE), Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, 1995, 205-223.

[012] [13] K N. J. Kalton, Spaces of compact operators, Math. Ann. 108 (1974), 267-278. | Zbl 0266.47038

[013] [14] L Å. Lima, Uniqueness of Hahn-Banach extensions and lifting of linear dependences, Math. Scand. 53 (1983), 97-113. | Zbl 0532.46003

[014] [15] Å. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J. 41 (1994), 473-490. | Zbl 0823.46023

[015] [16] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. | Zbl 0332.46013

[016] [17] E. Oja and M. P oldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Studia Math. 117 (1996), 289-306. | Zbl 0854.46014

[017] [18] P R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. | Zbl 0096.31102

[018] [19] R T. S. S. R. K. Rao, Spaces with the Namioka-Phelps property have trivial L-structure, Arch. Math. (Basel) 62 (1994), 65-68. | Zbl 0818.46021

[019] [20] B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57. | Zbl 0648.46004

[020] [21] S F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315-331. | Zbl 0363.46024

[021] [22] Y D. Yost, Approximation by compact operators between C(X) spaces, J. Approx. Theory 49 (1987), 99-109. | Zbl 0621.41025