@article{bwmeta1.element.bwnjournal-article-cmv75z2p245bwm, author = {Philippe Lauren\c cot and Dariusz Wrzosek}, title = {The Becker-D\"oring model with diffusion. I. Basic properties of solutions}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {245-269}, zbl = {0894.35055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p245bwm} }
Laurençot, Philippe; Wrzosek, Dariusz. The Becker-Döring model with diffusion. I. Basic properties of solutions. Colloquium Mathematicae, Tome 78 (1998) pp. 245-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p245bwm/
[000] [1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254.
[001] [2] J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation, J. Statist. Phys. 61 (1990), 203-234. | Zbl 1217.82050
[002] [3] J. M. Ball and J. Carr, Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 109-116. | Zbl 0656.58021
[003] [4] J. M. Ball, J. Carr and O. Penrose, The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions, Comm. Math. Phys. 104 (1986), 657-692. | Zbl 0594.58063
[004] [5] P. Baras, J. C. Hassan et L. Véron, Compacité de l'opérateur définissant la solution d'une équation d'évolution non homogène, C. R. Acad. Sci. Paris Sér. I 284 (1977), 799-802. | Zbl 0348.47026
[005] [6] P. Bénilan and D. Wrzosek, On an infinite system of reaction-diffusion equations, Adv. Math. Sci. Appl. 7 (1997), 349-364.
[006] [7] J. F. Collet and F. Poupaud, Existence of solutions to coagulation-fragmentation systems with diffusion, Transport. Theory Statist. Phys. 25 (1996), 503-513. | Zbl 0870.35117
[007] [8] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, 1968.
[008] [9] Ph. Laurençot and D. Wrzosek, Fragmentation-diffusion model. Existence of solutions and asymptotic behaviour, Proc. Roy. Soc. Edinburgh Sect. A, to appear. | Zbl 0912.35031
[009] [10] Ph. Laurençot and D. Wrzosek, The Becker-Döring model with diffusion. II. Long time behaviour, submitted. | Zbl 0913.35070
[010] [11] R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in: Nonlinear Equations in Applied Science, W. F. Ames and C. Rogers (eds.), Academic Press, Boston, 1992.
[011] [12] O. Penrose and A. Buhagiar, Kinetics of nucleation in a lattice gas model: microscopic theory and simulation compared, J. Statist. Phys. 30 (1983), 219-241.
[012] [13] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, Berlin, 1984. | Zbl 0546.35003
[013] [14] M. Slemrod, Trend to equilibrium in the Becker-Döring cluster equations, Nonlinearity 2 (1989), 429-443. | Zbl 0709.60528
[014] [15] J. L. Spouge, An existence theorem for the discrete coagulation-fragmentation equations, Math. Proc. Cambridge Philos. Soc. 96 (1984), 351-357. | Zbl 0541.92029
[015] [16] D. Wrzosek, Existence of solutions for the discrete coagulation-fragmentation model with diffusion, Topol. Methods Nonlinear Anal. 9 (1997), 279-296. | Zbl 0892.35077
[016] [17] A. Ziabicki, Generalized theory of nucleation kinetics. IV. Nucleation as diffusion in the space of cluster dimensions, positions, orientations and internal structure, J. Chem. Phys. 85 (1986), 3042-3056.