It is known that there are only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Here, we determine all the imaginary cyclic sextic fields with class numbers equal to their genus class numbers.
@article{bwmeta1.element.bwnjournal-article-cmv75z2p205bwm, author = {St\'ephane Louboutin}, title = {The imaginary cyclic sextic fields with class numbers equal to their genus class numbers}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {205-212}, zbl = {0885.11057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p205bwm} }
Louboutin, Stéphane. The imaginary cyclic sextic fields with class numbers equal to their genus class numbers. Colloquium Mathematicae, Tome 78 (1998) pp. 205-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p205bwm/
[000] [Gra] M. N. Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de , J. Reine Angew. Math. 277 (1975), 89-116.
[001] [Lou 1] S. Louboutin, Minoration au point 1 des fonctions et détermination des corps sextiques abéliens totalement imaginaires principaux, Acta Arith. 62 (1992), 109-124.
[002] [Lou 2] S. Louboutin, Majorations explicites de , C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 11-14.
[003] [Lou 3] S. Louboutin, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc. 120 (1994), 425-434. | Zbl 0795.11058
[004] [Lou 4] S. Louboutin, A finiteness theorem for imaginary abelian number fields, Manuscripta Math. 91 (1996), 343-352. | Zbl 0869.11089
[005] [Lou 5] S. Louboutin, The nonquadratic imaginary cyclic fields of -power degrees with class numbers equal to their genus numbers, Proc. Amer. Math. Soc., to appear. | Zbl 0919.11071
[006] [Low] M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1968), 117-140. | Zbl 0207.05602
[007] [Miy] I. Miyada, On imaginary abelian number fields of type with one class in each genus, Manuscripta Math. 88 (1995), 535-540. | Zbl 0851.11061
[008] [PK] Y.-H. Park and S.-H. Kwon, Determination of all imaginary abelian sextic number fields with class number , Acta Arith., to appear.
[009] [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
[010] [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 62 (1994), 899-921. | Zbl 0798.11046