For a given mapping f between continua we consider the induced mappings between the corresponding hyperspaces of closed subsets or of subcontinua. It is shown that if either of the two induced mappings is hereditarily weakly confluent (or hereditarily confluent, or hereditarily monotone, or atomic), then f is a homeomorphism, and consequently so are both the induced mappings. Similar results are obtained for mappings between cones over the domain and over the range continua.
@article{bwmeta1.element.bwnjournal-article-cmv75z2p195bwm, author = {Janusz Charatonik and W\l odzimierz Charatonik}, title = {Hereditarily weakly confluent induced mappings are homeomorphisms}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {195-203}, zbl = {0890.54033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p195bwm} }
Charatonik, Janusz; Charatonik, Włodzimierz. Hereditarily weakly confluent induced mappings are homeomorphisms. Colloquium Mathematicae, Tome 78 (1998) pp. 195-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p195bwm/
[000] [1] R. D. Anderson, Atomic decompositions of continua, Duke Math. J. 24 (1956), 507-514. | Zbl 0073.39701
[001] [2] J. J. Charatonik and W. J. Charatonik, Lightness of induced mappings, Tsukuba J. Math., to appear. | Zbl 0939.54005
[002] [3] W. J. Charatonik, Arc approximation property and confluence of induced mappings, Rocky Mountain J. Math., to appear. | Zbl 0926.54024
[003] [4] A. Emeryk and Z. Horbanowicz, On atomic mappings, Colloq. Math. 27 (1973), 49-55.
[004] [5] H. Hosokawa, Some remarks on the atomic mappings, Bull. Tokyo Gakugei Univ. (4) 40 (1988), 31-37.
[005] [6] H. Hosokawa, Induced mappings between hyperspaces, ibid. 41 (1989), 1-6.
[006] [7] H. Hosokawa, Induced mappings between hyperspaces II, ibid. 44 (1992), 1-7. | Zbl 0767.54005
[007] [8] H. Hosokawa, Induced mappings on hyperspaces, Tsukuba J. Math., to appear.
[008] [9] H. Hosokawa, Induced mappings on hyperspaces II, ibid., to appear.
[009] [10] A. Y. W. Lau, A note on monotone maps and hyperspaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 121-123. | Zbl 0319.54011
[010] [11] T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979). | Zbl 0444.54021
[011] [12] S. B. Nadler, Jr., Hyperspaces of Sets, Dekker, 1978.