Rank additivity for quasi-tilted algebras of canonical type
Hübner, Thomas
Colloquium Mathematicae, Tome 78 (1998), p. 183-193 / Harvested from The Polish Digital Mathematics Library

Given the category X of coherent sheaves over a weighted projective line X=X(λ,p) (of any representation type), the endomorphism ring Σ=(𝒯) of an arbitrary tilting sheaf - which is by definition an almost concealed canonical algebra - is shown to satisfy a rank additivity property (Theorem 3.2). Moreover, this property extends to the representationinfinite quasi-tilted algebras of canonical type (Theorem 4.2). Finally, it is demonstrated that rank additivity does not generalize to the case of tilting complexes over X (Example 4.3).

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210537
@article{bwmeta1.element.bwnjournal-article-cmv75z2p183bwm,
     author = {Thomas H\"ubner},
     title = {Rank additivity for quasi-tilted algebras of canonical type},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {183-193},
     zbl = {0902.16012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p183bwm}
}
Hübner, Thomas. Rank additivity for quasi-tilted algebras of canonical type. Colloquium Mathematicae, Tome 78 (1998) pp. 183-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p183bwm/

[000] [1] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representation of Algebras and Vector Bundles (Lambrecht, 1985), Springer, 1987, 265-297.

[001] [2] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343.

[002] [3] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011

[003] [4] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. | Zbl 0503.16024

[004] [5] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. | Zbl 0516.16023

[005] [6] T. Hübner, Exzeptionelle Vektorbündel und Reflektionen an Kippgarben über projektiven gewichteten Kurven, Dissertation, 1996.

[006] [7] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Proc. ICRA VI, 1992, 313-337. | Zbl 0809.16012

[007] [8] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representation Theory of Algebras, ICRA VII, Cocoyoc 1994, CMS Conf. Proc. 18, 1996, 455-473. | Zbl 0863.16013

[008] [9] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., to appear.

[009] [10] H. Lenzing and A. Skowroński, Quasi-tilted agebras of canonical type, Colloq. Math. 71 (1996), 161-181. | Zbl 0870.16007

[010] [11] H. Meltzer, Exceptional sequences for canonical algebras, Arch. Math. (Basel) 64 (1995), 304-312. | Zbl 0818.16016

[011] [12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.