Given the category of coherent sheaves over a weighted projective line (of any representation type), the endomorphism ring of an arbitrary tilting sheaf - which is by definition an almost concealed canonical algebra - is shown to satisfy a rank additivity property (Theorem 3.2). Moreover, this property extends to the representationinfinite quasi-tilted algebras of canonical type (Theorem 4.2). Finally, it is demonstrated that rank additivity does not generalize to the case of tilting complexes over (Example 4.3).
@article{bwmeta1.element.bwnjournal-article-cmv75z2p183bwm, author = {Thomas H\"ubner}, title = {Rank additivity for quasi-tilted algebras of canonical type}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {183-193}, zbl = {0902.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p183bwm} }
Hübner, Thomas. Rank additivity for quasi-tilted algebras of canonical type. Colloquium Mathematicae, Tome 78 (1998) pp. 183-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p183bwm/
[000] [1] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representation of Algebras and Vector Bundles (Lambrecht, 1985), Springer, 1987, 265-297.
[001] [2] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343.
[002] [3] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011
[003] [4] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. | Zbl 0503.16024
[004] [5] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. | Zbl 0516.16023
[005] [6] T. Hübner, Exzeptionelle Vektorbündel und Reflektionen an Kippgarben über projektiven gewichteten Kurven, Dissertation, 1996.
[006] [7] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Proc. ICRA VI, 1992, 313-337. | Zbl 0809.16012
[007] [8] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representation Theory of Algebras, ICRA VII, Cocoyoc 1994, CMS Conf. Proc. 18, 1996, 455-473. | Zbl 0863.16013
[008] [9] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., to appear.
[009] [10] H. Lenzing and A. Skowroński, Quasi-tilted agebras of canonical type, Colloq. Math. 71 (1996), 161-181. | Zbl 0870.16007
[010] [11] H. Meltzer, Exceptional sequences for canonical algebras, Arch. Math. (Basel) 64 (1995), 304-312. | Zbl 0818.16016
[011] [12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.