Using elementary arguments we improve former results of P. Vrbová concerning local spectrum. As a consequence, we obtain a new proof of Kaplansky’s theorem on algebraic operators on a Banach space.
@article{bwmeta1.element.bwnjournal-article-cmv75z2p159bwm, author = {Driss Drissi}, title = {Local spectrum and Kaplansky's theorem on algebraic operators}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {159-165}, zbl = {0907.47010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p159bwm} }
Drissi, Driss. Local spectrum and Kaplansky's theorem on algebraic operators. Colloquium Mathematicae, Tome 78 (1998) pp. 159-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z2p159bwm/
[000] [1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
[001] [2] B. Aupetit and D. Drissi, Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579. | Zbl 0861.47003
[002] [3] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
[003] [4] N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. | Zbl 0088.32102
[004] [5] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977. | Zbl 0381.47001
[005] [6] C. Foiaş and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473-486. | Zbl 0175.13604
[006] [7] J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324. | Zbl 0172.17204
[007] [8] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
[008] [9] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, 1969.
[009] [10] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492. | Zbl 0268.47006