The aim of this paper is to give a characterization of regular K-contact A-manifolds.
@article{bwmeta1.element.bwnjournal-article-cmv75z1p97bwm, author = {W\L odzimierz Jelonek}, title = {K-contact A-manifolds}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {97-103}, zbl = {0893.53018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p97bwm} }
Jelonek, WŁodzimierz. K-contact A-manifolds. Colloquium Mathematicae, Tome 78 (1998) pp. 97-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p97bwm/
[000] [B] A. Besse, Einstein Manifolds, Springer, Berlin, 1987.
[001] [Bl] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, 1976.
[002] [B-W] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. 68 (1958), 721-734. | Zbl 0084.39204
[003] [G] A. Gray, Einstein like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. | Zbl 0378.53018
[004] [J-1] W. Jelonek, Some simple examples of almost Kähler non-Kähler structures, Math. Ann. 305 (1996), 639-649. | Zbl 0858.53027
[005] [J-2] W. Jelonek, On A-tensors in Riemannian geometry, preprint 551, Polish Acad. Sci., 1995.
[006] [K] S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tôhoku Math. J. 8 (1956), 29-45. | Zbl 0075.32103
[007] [O-1] Z. Olszak, On contact metric manifolds, ibid. 31 (1979), 247-253.
[008] [O-2] Z. Olszak, Certain property of the Ricci tensor on Sasakian manifolds, Colloq. Math. 40 (1979), 235-237. | Zbl 0419.53028
[009] [O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[010] [S-1] K. Sekigawa, On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann. 271 (1985), 333-337. | Zbl 0562.53032
[011] [S-2] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677-684.
[012] [S-V] K. Sekigawa and L. Vanhecke, Symplectic geodesic symmetries on Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103. | Zbl 0589.53068