On Hˇn-bubbles in n-dimensional compacta
Karimov, Umed ; Repovš, Dušan
Colloquium Mathematicae, Tome 78 (1998), p. 39-51 / Harvested from The Polish Digital Mathematics Library

A topological space X is called an Hˇn-bubble (n is a natural number, Hˇn is Čech cohomology with integer coefficients) if its n-dimensional cohomology Hˇn(X) is nontrivial and the n-dimensional cohomology of every proper subspace is trivial. The main results of our paper are: (1) Any compact metrizable Hˇn-bubble is locally connected; (2) There exists a 2-dimensional 2-acyclic compact metrizable ANR which does not contain any Hˇ2-bubbles; and (3) Every n-acyclic finite-dimensional LHˇn-trivial metrizable compactum contains an Hˇn-bubble.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210528
@article{bwmeta1.element.bwnjournal-article-cmv75z1p39bwm,
     author = {Umed Karimov and Du\v san Repov\v s},
     title = {On $\check{H}^n$-bubbles in n-dimensional compacta},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {39-51},
     zbl = {0887.55005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p39bwm}
}
Karimov, Umed; Repovš, Dušan. On $\check{H}^n$-bubbles in n-dimensional compacta. Colloquium Mathematicae, Tome 78 (1998) pp. 39-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p39bwm/

[000] [1] P. S. Aleksandrov, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238.

[001] [2] K. Borsuk, Theory of Retracts, Monograf. Mat. 44, PWN, Warszawa, 1967. | Zbl 0153.52905

[002] [3] G. E. Bredon, Sheaf Theory, 2nd ed., Springer, New York, 1997.

[003] [4] R. Engelking, General Topology, Heldermann, Berlin, 1989.

[004] [5] D. B. Fuks and V. A. Rokhlin, Introductory Course in Topology: Geometric Chapters, Nauka, Moscow, 1977 (in Russian). | Zbl 0417.55002

[005] [6] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. | Zbl 0080.16201

[006] [7] A. E. Harlap, Local homology and cohomology, homological dimension and generalized manifolds, Mat. Sb. 96 (1975), 347-373 (in Russian); English transl.: Math. USSR-Sb. 25 (1975), 323-349. | Zbl 0312.55006

[007] [8] U. H. Karimov, On the generalized homotopy axiom, Izv. Akad. Nauk Tadžik. SSR Otdel. Fiz.-Mat. Khim. i Geol. Nauk 71 (1979), 83-84 (in Russian).

[008] [9] W. Kuperberg, On certain homological properties of finite-dimensional compacta. Carries, minimal carries and bubbles, Fund. Math. 83 (1973), 7-23. | Zbl 0269.54020

[009] [10] K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.

[010] [11] S. Mardešić and J. Segal, Shape Theory: The Inverse System Approach, North-Holland, Amsterdam 1982.

[011] [12] W. J. R. Mitchell, Homology manifolds, inverse systems and cohomological local connectedness, J. London Math. Soc. (2) 19 (1979), 348-358. | Zbl 0395.57008

[012] [13] E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. 7 (1959), 143-144. | Zbl 0085.01702