A topological space X is called an -bubble (n is a natural number, is Čech cohomology with integer coefficients) if its n-dimensional cohomology is nontrivial and the n-dimensional cohomology of every proper subspace is trivial. The main results of our paper are: (1) Any compact metrizable -bubble is locally connected; (2) There exists a 2-dimensional 2-acyclic compact metrizable ANR which does not contain any -bubbles; and (3) Every n-acyclic finite-dimensional -trivial metrizable compactum contains an -bubble.
@article{bwmeta1.element.bwnjournal-article-cmv75z1p39bwm, author = {Umed Karimov and Du\v san Repov\v s}, title = {On $\check{H}^n$-bubbles in n-dimensional compacta}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {39-51}, zbl = {0887.55005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p39bwm} }
Karimov, Umed; Repovš, Dušan. On $\check{H}^n$-bubbles in n-dimensional compacta. Colloquium Mathematicae, Tome 78 (1998) pp. 39-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p39bwm/
[000] [1] P. S. Aleksandrov, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238.
[001] [2] K. Borsuk, Theory of Retracts, Monograf. Mat. 44, PWN, Warszawa, 1967. | Zbl 0153.52905
[002] [3] G. E. Bredon, Sheaf Theory, 2nd ed., Springer, New York, 1997.
[003] [4] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[004] [5] D. B. Fuks and V. A. Rokhlin, Introductory Course in Topology: Geometric Chapters, Nauka, Moscow, 1977 (in Russian). | Zbl 0417.55002
[005] [6] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. | Zbl 0080.16201
[006] [7] A. E. Harlap, Local homology and cohomology, homological dimension and generalized manifolds, Mat. Sb. 96 (1975), 347-373 (in Russian); English transl.: Math. USSR-Sb. 25 (1975), 323-349. | Zbl 0312.55006
[007] [8] U. H. Karimov, On the generalized homotopy axiom, Izv. Akad. Nauk Tadžik. SSR Otdel. Fiz.-Mat. Khim. i Geol. Nauk 71 (1979), 83-84 (in Russian).
[008] [9] W. Kuperberg, On certain homological properties of finite-dimensional compacta. Carries, minimal carries and bubbles, Fund. Math. 83 (1973), 7-23. | Zbl 0269.54020
[009] [10] K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.
[010] [11] S. Mardešić and J. Segal, Shape Theory: The Inverse System Approach, North-Holland, Amsterdam 1982.
[011] [12] W. J. R. Mitchell, Homology manifolds, inverse systems and cohomological local connectedness, J. London Math. Soc. (2) 19 (1979), 348-358. | Zbl 0395.57008
[012] [13] E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. 7 (1959), 143-144. | Zbl 0085.01702