@article{bwmeta1.element.bwnjournal-article-cmv75z1p149bwm, author = {Jan Mycielski}, title = {Non-amenable groups with amenable action and some paradoxical decompositions in the plane}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {149-157}, zbl = {0920.28009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p149bwm} }
Mycielski, Jan. Non-amenable groups with amenable action and some paradoxical decompositions in the plane. Colloquium Mathematicae, Tome 78 (1998) pp. 149-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv75z1p149bwm/
[000] [B] A. Borel, On free subgroups of semi-simple groups, Enseign. Math. 29 (1983), 151-164. | Zbl 0533.22009
[001] [DS] P. Deligne and D. Sullivan, Division algebras and the Hausdorff-Banach-Tarski Paradox, ibid., 145-150. | Zbl 0521.57035
[002] [K] M. Kuranishi, On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. J. 2 (1951), 63-71. | Zbl 0045.31003
[003] [M1] J. Mycielski, The Banach-Tarski paradox for the hyperbolic plane, Fund. Math. 132 (1989), 143-149. | Zbl 0685.51012
[004] [M2] J. Mycielski, Finitely additive measures I, Colloq. Math. 42 (1979), 309-318. | Zbl 0431.28003
[005] [MW] J. Mycielski and S. Wagon, Large free groups of isometries and their geometrical uses, Enseign. Math. 30 (1984), 247-267. | Zbl 0563.57021
[006] [S] K. Satô, A free group acting without fixed points on the rational unit sphere, Fund. Math. 148 (1995), 63-69. | Zbl 0837.20034
[007] [W] S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985 (3rd printing). | Zbl 0569.43001