@article{bwmeta1.element.bwnjournal-article-cmv74i2p225bwm, author = {Pawe\L\ Idziak and Andrzej Wro\'nski}, title = {Definability of principal congruences in equivalential algebras}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {225-238}, zbl = {0890.08004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p225bwm} }
Idziak, PaweŁ; Wroński, Andrzej. Definability of principal congruences in equivalential algebras. Colloquium Mathematicae, Tome 78 (1998) pp. 225-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p225bwm/
[000] [1] K. A. Baker, Definable normal closures in locally finite varieties of groups, Houston J. Math. 7 (1981), 467-471. | Zbl 0494.20012
[001] [2] J. T. Baldwin and J. Berman, The number of subdirectly irreducible algebras in a variety, Algebra Universalis 5 (1975), 379-389. | Zbl 0348.08002
[002] [3] J. Berman, A proof of Lyndon's finite basis theorem, Discrete Math. 29 (1980), 229-233. | Zbl 0449.08004
[003] [4] W. Blok, P. Köhler and D. Pigozzi, On the structure of varieties with equationally definable principal congruences II, Algebra Universalis 18 (1984), 334-379.
[004] [5] S. Burris, An example concerning definable principal congruences, ibid. 7 (1977), 403-404. | Zbl 0364.08005
[005] [6] S. Burris and J. Lawrence, Definable principal congruences in varieties of rings and groups, ibid. 9 (1979), 152-164. | Zbl 0407.08006
[006] [7] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973.
[007] [8] A. Eastman and W. Nemitz, Density and closure in implicative semilattices, Algebra Universalis 5 (1975), 1-5.
[008] [9] H. P. Gumm and A. Ursini, Ideals in universal algebras, ibid. 19 (1984), 45-54. | Zbl 0547.08001
[009] [10] J. Hagemmann, On regular and weakly regular congruences, preprint 75, TH Darmstadt, 1973.
[010] [11] P. M. Idziak, Varieties with decidable finite algebras I: Linearity, Algebra Universalis 26 (1989), 234-246. | Zbl 0679.08002
[011] [12] J. K. Kabziński and A. Wroński, On equivalential algebras, in: Proc. 1975 Internat. Sympos. on Multiple-Valued Logic (Indiana University, Bloomington, Ind., 1975), IEEE Comput. Soc., Long Beach, Calif., 1975, 419-428.
[012] [13] E. Kiss, Definable principal congruences in congruence distributive varieties, Algebra Universalis 21 (1985), 213-224. | Zbl 0554.08006
[013] [14] P. Köhler and D. Pigozzi, Varieties with equationally definable principal congruences, ibid. 11 (1980), 213-219. | Zbl 0448.08005
[014] [15] R. McKenzie, Paraprimal varieties: A study of finite axiomatizability and definable principal congruences, ibid. 8 (1978), 336-348. | Zbl 0383.08008
[015] [16] A. F. Pixley, Principal congruence formulas in arithmetical varieties, in: Lecture Notes in Math. 1149, Springer, 1985, 238-254. | Zbl 0572.08003
[016] [17] G. E. Simons, Varieties of rings with definable principal congruences, Proc. Amer. Math. Soc. 87 (1983), 367-402. | Zbl 0512.16017
[017] [18] A. Wroński, On the free equivalential algebra with three generators, Bull. Sec. Logic Polish Acad. Sci. 22 (1993), 37-39. | Zbl 0793.03078