Definability of principal congruences in equivalential algebras
Idziak, PaweŁ ; Wroński, Andrzej
Colloquium Mathematicae, Tome 78 (1998), p. 225-238 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210512
@article{bwmeta1.element.bwnjournal-article-cmv74i2p225bwm,
     author = {Pawe\L\ Idziak and Andrzej Wro\'nski},
     title = {Definability of principal congruences in equivalential algebras},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {225-238},
     zbl = {0890.08004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p225bwm}
}
Idziak, PaweŁ; Wroński, Andrzej. Definability of principal congruences in equivalential algebras. Colloquium Mathematicae, Tome 78 (1998) pp. 225-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p225bwm/

[000] [1] K. A. Baker, Definable normal closures in locally finite varieties of groups, Houston J. Math. 7 (1981), 467-471. | Zbl 0494.20012

[001] [2] J. T. Baldwin and J. Berman, The number of subdirectly irreducible algebras in a variety, Algebra Universalis 5 (1975), 379-389. | Zbl 0348.08002

[002] [3] J. Berman, A proof of Lyndon's finite basis theorem, Discrete Math. 29 (1980), 229-233. | Zbl 0449.08004

[003] [4] W. Blok, P. Köhler and D. Pigozzi, On the structure of varieties with equationally definable principal congruences II, Algebra Universalis 18 (1984), 334-379.

[004] [5] S. Burris, An example concerning definable principal congruences, ibid. 7 (1977), 403-404. | Zbl 0364.08005

[005] [6] S. Burris and J. Lawrence, Definable principal congruences in varieties of rings and groups, ibid. 9 (1979), 152-164. | Zbl 0407.08006

[006] [7] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973.

[007] [8] A. Eastman and W. Nemitz, Density and closure in implicative semilattices, Algebra Universalis 5 (1975), 1-5.

[008] [9] H. P. Gumm and A. Ursini, Ideals in universal algebras, ibid. 19 (1984), 45-54. | Zbl 0547.08001

[009] [10] J. Hagemmann, On regular and weakly regular congruences, preprint 75, TH Darmstadt, 1973.

[010] [11] P. M. Idziak, Varieties with decidable finite algebras I: Linearity, Algebra Universalis 26 (1989), 234-246. | Zbl 0679.08002

[011] [12] J. K. Kabziński and A. Wroński, On equivalential algebras, in: Proc. 1975 Internat. Sympos. on Multiple-Valued Logic (Indiana University, Bloomington, Ind., 1975), IEEE Comput. Soc., Long Beach, Calif., 1975, 419-428.

[012] [13] E. Kiss, Definable principal congruences in congruence distributive varieties, Algebra Universalis 21 (1985), 213-224. | Zbl 0554.08006

[013] [14] P. Köhler and D. Pigozzi, Varieties with equationally definable principal congruences, ibid. 11 (1980), 213-219. | Zbl 0448.08005

[014] [15] R. McKenzie, Paraprimal varieties: A study of finite axiomatizability and definable principal congruences, ibid. 8 (1978), 336-348. | Zbl 0383.08008

[015] [16] A. F. Pixley, Principal congruence formulas in arithmetical varieties, in: Lecture Notes in Math. 1149, Springer, 1985, 238-254. | Zbl 0572.08003

[016] [17] G. E. Simons, Varieties of rings with definable principal congruences, Proc. Amer. Math. Soc. 87 (1983), 367-402. | Zbl 0512.16017

[017] [18] A. Wroński, On the free equivalential algebra with three generators, Bull. Sec. Logic Polish Acad. Sci. 22 (1993), 37-39. | Zbl 0793.03078