Heat kernels and Riesz transforms on nilpotent Lie groups
ter Elst, A. ; Robinson, Derek ; Sikora, Adam
Colloquium Mathematicae, Tome 78 (1998), p. 191-218 / Harvested from The Polish Digital Mathematics Library

We consider pure mth order subcoercive operators with complex coefficients acting on a connected nilpotent Lie group. We derive Gaussian bounds with the correct small time singularity and the optimal large time asymptotic behaviour on the heat kernel and all its derivatives, both right and left. Further we prove that the Riesz transforms of all orders are bounded on the Lp -spaces with p ∈ (1, ∞). Finally, for second-order operators with real coefficients we derive matching Gaussian lower bounds and deduce Harnack inequalities valid for all times.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210510
@article{bwmeta1.element.bwnjournal-article-cmv74i2p191bwm,
     author = {A. ter Elst and Derek Robinson and Adam Sikora},
     title = {Heat kernels and Riesz transforms on nilpotent Lie groups},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {191-218},
     zbl = {0891.35030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p191bwm}
}
ter Elst, A.; Robinson, Derek; Sikora, Adam. Heat kernels and Riesz transforms on nilpotent Lie groups. Colloquium Mathematicae, Tome 78 (1998) pp. 191-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p191bwm/

[000] [ADM] D. Albrecht, X. Duong and A. McIntosh, Operator theory and harmonic analysis, in: Instructional Workshop on Analysis and Geometry, Part III, Proc. Centre Math. Appl. Austral. Nat. Univ. 34, Austral. Nat. Univ., Canberra, 1996, 77-136. | Zbl 0903.47010

[001] [Ale] G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (1992), 691-727. | Zbl 0792.22005

[002] [BeL] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. | Zbl 0344.46071

[003] [BER] R. J. Burns, A. F. M. ter Elst and D. W. Robinson, L_p-regularity of subelliptic operators on Lie groups, J. Operator Theory 31 (1994), 165-187. | Zbl 0857.58044

[004] [BuB] P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation, Grundlehren Math. Wiss. 145, Springer, Berlin, 1967.

[005] [CoW1] R. R. Coifman et G. Weiss, Analyse harmonique noncommutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.

[006] [CoW2] R. R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, 1977.

[007] [CDMY] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H^∞ functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. | Zbl 0853.47010

[008] [DuR] X. T. Duong and D. W. Robinson, Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Anal. 141 (1996), 89-129. | Zbl 0932.47013

[009] [ElR1] A. F. M. ter Elst and D. W. Robinson, Subelliptic operators on Lie groups: regularity, J. Austral. Math. Soc. Ser. A 57 (1994), 179-229. | Zbl 0832.43008

[010] [ElR2] A. F. M. ter Elst and D. W. Robinson, Functional analysis of subelliptic operators on Lie groups, J. Operator Theory 31 (1994), 277-301. | Zbl 0851.43005

[011] [ElR3] A. F. M. ter Elst and D. W. Robinson, Subcoercivity and subelliptic operators on Lie groups I: Free nilpotent groups, Potential Anal. 3 (1994), 283-337. | Zbl 0923.22005

[012] [ElR4] A. F. M. ter Elst and D. W. Robinson, Subcoercivity and subelliptic operators on Lie groups II: The general case, ibid. 4 (1995), 205-243. | Zbl 0841.43016

[013] [ElR5] A. F. M. ter Elst and D. W. Robinson, Reduced heat kernels on nilpotent Lie groups, Comm. Math. Phys. 173 (1995), 475-511. | Zbl 0838.22002

[014] [ElR6] A. F. M. ter Elst and D. W. Robinson, Elliptic operators on Lie groups, Acta Appl. Math. 44 (1996), 133-150. | Zbl 0856.22015

[015] [Fol] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | Zbl 0312.35026

[016] [GQS] G. I. Gaudry, T. Qian and P. Sjögren, Singular integrals associated to the Laplacian on the affine group ax + b, ibid. 30 (1992), 259-281. | Zbl 0776.43003

[017] [HeR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Grundlehren Math. Wiss. 152, Springer, Berlin, 1970.

[018] [LoV] N. Lohoué et N. T. Varopoulos, Remarques sur les transformées de Riesz sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I 301 (1985), 559-560. | Zbl 0582.43003

[019] [McI] A. McIntosh, Operators which have an H_∞ functional calculus, in: B. Jefferies, A. McIntosh, and W. J. Ricker (eds.), Miniconference on Operator Theory and Partial Differential Equations, Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., Canberra, 1986, 210-231.

[020] [Pat] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., Providence, 1988.

[021] [Rob] D. W. Robinson, Elliptic Operators and Lie Groups, Oxford Math. Monographs, Oxford Univ. Press, New York, 1991.

[022] [Sal] L. Saloff-Coste, Analyse sur les groupes de Lie à croissance polynômiale, Ark. Mat. 28 (1990), 315-331. | Zbl 0715.43009

[023] [Ste] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.

[024] [Var] V. S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, Grad. Texts in Math. 102, Springer, New York, 1984.