@article{bwmeta1.element.bwnjournal-article-cmv74i2p167bwm, author = {Christoph Schmoeger}, title = {The spectral mapping theorem for the essential approximate point spectrum}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {167-176}, zbl = {0904.47001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p167bwm} }
Schmoeger, Christoph. The spectral mapping theorem for the essential approximate point spectrum. Colloquium Mathematicae, Tome 78 (1998) pp. 167-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i2p167bwm/
[000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039
[001] [2] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. | Zbl 0203.45601
[002] [3] H. Heuser, Funktionalanalysis, 3rd ed., Teubner, 1992.
[003] [4] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. | Zbl 0090.09003
[004] [5] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61-64. | Zbl 0869.47017
[005] [6] K. K. Oberai, Spectral mapping theorems for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365-373. | Zbl 0439.47008
[006] [7] C. Pearcy, Some Recent Developments in Operator Theory, CBMS Regional Conf. Ser. in Math. 36, Amer. Math. Soc., Providence, 1978.
[007] [8] V. Rakočević, On one subset of M. Schechter's essential spectrum, Mat. Vesnik 5 (1981), 389-391. | Zbl 0504.47004
[008] [9] V. Rakočević, On the essential approximate point spectrum, II, ibid. 36 (1984), 89-97. | Zbl 0535.47002
[009] [10] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198. | Zbl 0602.47003
[010] [11] M. Schechter, On the essential spectrum of an arbitrary operator, I, J. Math. Anal. Appl. 13 (1966), 205-215. | Zbl 0147.12101
[011] [12] C. Schmoeger, Ascent, descent and the Atkinson region in Banach algebras, II, Ricerche Mat. 42 (1993), 249-264. | Zbl 0807.46054
[012] [13] B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612. | Zbl 0043.11901