Extreme points of the closed unit ball in C*-algebras
Berntzen, Rainer
Colloquium Mathematicae, Tome 72 (1997), p. 99-100 / Harvested from The Polish Digital Mathematics Library

In this short note we give a short and elementary proof of a characterization of those extreme points of the closed unit ball in C*-algebras which are unitary. The result was originally proved by G. K. Pedersen using some methods from the theory of approximation by invertible elements.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210505
@article{bwmeta1.element.bwnjournal-article-cmv74i1p99bwm,
     author = {Rainer Berntzen},
     title = {Extreme points of the closed unit ball in C*-algebras},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {99-100},
     zbl = {0896.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p99bwm}
}
Berntzen, Rainer. Extreme points of the closed unit ball in C*-algebras. Colloquium Mathematicae, Tome 72 (1997) pp. 99-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p99bwm/

[000] [Kad] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. | Zbl 0045.06201

[001] [Pe1] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, London Math. Soc. Monographs 13, Academic Press, London, 1979.

[002] [Pe2] G. K. Pedersen, The λ-function in operator algebras, J. Operator Theory 26 (1991), 345-382.