We show that the transference method of Coifman and Weiss can be extended to Hardy and Sobolev spaces. As an application we obtain the de Leeuw restriction theorems for multipliers.
@article{bwmeta1.element.bwnjournal-article-cmv74i1p47bwm, author = {Maria Carro and Javier Soria}, title = {Transference theory onHardy and Sobolev spaces}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {47-69}, zbl = {1056.42510}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p47bwm} }
Carro, Maria; Soria, Javier. Transference theory onHardy and Sobolev spaces. Colloquium Mathematicae, Tome 72 (1997) pp. 47-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p47bwm/
[000] [ABG1] N. Asmar, E. Berkson and T. A. Gillespie, Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math. 113 (1991), 47-74. | Zbl 0729.43003
[001] [ABG2] N. Asmar, E. Berkson and T. A. Gillespie, Transference of weak type maximal inequalities by distributionally bounded representations, Quart. J. Math. Oxford 43 (1992), 259-282. | Zbl 0795.43007
[002] [CT] R. Caballero and A. de la Torre, An atomic theory for ergodic spaces, Studia Math. 82 (1985), 39-59. | Zbl 0593.46046
[003] [CW1] R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977.
[004] [CW2] R. Coifman and G. Weiss, Maximal functions and spaces defined by ergodic transformations, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 1761-1763. | Zbl 0257.46077
[005] [C] L. Colzani, Fourier transform of distributions in Hardy spaces, Boll. Un. Mat. Ital. A (6) 1 (1982), 403-410. | Zbl 0505.46030
[006] [D] K. de Leeuw, On multipliers, Ann. of Math. 81 (1965), 364-379.
[007] [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, 1963.
[008] [M] A. Miyachi, On some Fourier multipliers for , J. Fac. Sci. Univ. Tokyo 27 (1980), 157-179. | Zbl 0433.42019