@article{bwmeta1.element.bwnjournal-article-cmv74i1p157bwm, author = {James Huard and Blair Spearman and Kenneth Williams}, title = {On Pascal's triangle modulo $p^2$ }, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {157-165}, zbl = {0996.11016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p157bwm} }
Huard, James; Spearman, Blair; Williams, Kenneth. On Pascal’s triangle modulo $p^2$ . Colloquium Mathematicae, Tome 72 (1997) pp. 157-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p157bwm/
[000] [1] K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83. | Zbl 0732.11009
[001] [2] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105. | Zbl 0499.10005
[002] [3] J. G. Huard, B. K. Spearman and K. S. Williams, Pascal's triangle (mod 9), Acta Arith. 78 (1997), 331-349. | Zbl 0874.11024
[003] [4] G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (N.S.) 9 (1968), 1-12.
[004] [5] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54.
[005] [6] D. Singmaster, Notes on binomial coefficients I - a generalization of Lucas' congruence, J. London Math. Soc. (2) 8 (1974), 545-548. | Zbl 0293.05005
[006] [7] W. A. Webb, The number of binomial coefficients in residue classes modulo p and , Colloq. Math. 60/61 (1990), 275-280. | Zbl 0734.11018