Cesàro summability of one- and two-dimensional trigonometric-Fourier series
Weisz, Ferenc
Colloquium Mathematicae, Tome 72 (1997), p. 123-133 / Harvested from The Polish Digital Mathematics Library

We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from L to L then it is also bounded from the classical Hardy space Hp(T) to Lp (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from Hp(T) to Lp (3/4 < p ≤ ∞) and is of weak type (L1,L1). We define the two-dimensional dyadic hybrid Hardy space H1(T2) and verify that the maximal operator of the Cesàro means of a two-dimensional function is of weak type (H1(T2),L1). So we deduce that the two-parameter Cesàro means of a function fH1(T2)LlogL converge a.e. to the function in question.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210495
@article{bwmeta1.element.bwnjournal-article-cmv74i1p123bwm,
     author = {Ferenc Weisz},
     title = {Ces\`aro summability of one- and two-dimensional trigonometric-Fourier series},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {123-133},
     zbl = {0891.42006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p123bwm}
}
Weisz, Ferenc. Cesàro summability of one- and two-dimensional trigonometric-Fourier series. Colloquium Mathematicae, Tome 72 (1997) pp. 123-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p123bwm/

[000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129 Academic Press, New York, 1988. | Zbl 0647.46057

[001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071

[002] [3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137-153. | Zbl 0223.30048

[003] [4] R. R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269-274. | Zbl 0289.46037

[004] [5] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[005] [6] P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970. | Zbl 0215.20203

[006] [7] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 1, Springer, Berlin, 1982.

[007] [8] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.

[008] [9] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. | Zbl 0285.41006

[009] [10] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-194. | Zbl 0257.46078

[010] [11] N. J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 558-591. | Zbl 0065.05303

[011] [12] N. Fujii, A maximal inequality for H1-functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116. | Zbl 0415.43014

[012] [13] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc. 75, Providence, R.I., 1989.

[013] [14] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132. | Zbl 65.0266.01

[014] [15] F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140. | Zbl 0795.42016

[015] [16] N. M. Rivière and Y. Sagher, Interpolation between L and H1, the real method, J. Funct. Anal. 14 (1973), 401-409. | Zbl 0295.46056

[016] [17] F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 189-195.

[017] [18] F. Schipp and P. Simon, On some (H,L1)-type maximal inequalities with respect to the Walsh-Paley system, in: Functions, Series, Operators, Budapest, 1980, Colloq. Math. Soc. János Bolyai 35, North-Holland, Amsterdam, 1981, 1039-1045.

[018] [19] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501

[019] [20] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. | Zbl 0621.42001

[020] [21] F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), 229-242. | Zbl 0866.42020

[021] [22] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049

[022] [23] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. | Zbl 0085.05601