We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from to then it is also bounded from the classical Hardy space to (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from to (3/4 < p ≤ ∞) and is of weak type . We define the two-dimensional dyadic hybrid Hardy space and verify that the maximal operator of the Cesàro means of a two-dimensional function is of weak type . So we deduce that the two-parameter Cesàro means of a function converge a.e. to the function in question.
@article{bwmeta1.element.bwnjournal-article-cmv74i1p123bwm, author = {Ferenc Weisz}, title = {Ces\`aro summability of one- and two-dimensional trigonometric-Fourier series}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {123-133}, zbl = {0891.42006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p123bwm} }
Weisz, Ferenc. Cesàro summability of one- and two-dimensional trigonometric-Fourier series. Colloquium Mathematicae, Tome 72 (1997) pp. 123-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv74i1p123bwm/
[000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129 Academic Press, New York, 1988. | Zbl 0647.46057
[001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071
[002] [3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class , Trans. Amer. Math. Soc. 157 (1971), 137-153. | Zbl 0223.30048
[003] [4] R. R. Coifman, A real variable characterization of , Studia Math. 51 (1974), 269-274. | Zbl 0289.46037
[004] [5] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[005] [6] P. Duren, Theory of Spaces, Academic Press, New York, 1970. | Zbl 0215.20203
[006] [7] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 1, Springer, Berlin, 1982.
[007] [8] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
[008] [9] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. | Zbl 0285.41006
[009] [10] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-194. | Zbl 0257.46078
[010] [11] N. J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 558-591. | Zbl 0065.05303
[011] [12] N. Fujii, A maximal inequality for -functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116. | Zbl 0415.43014
[012] [13] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc. 75, Providence, R.I., 1989.
[013] [14] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132. | Zbl 65.0266.01
[014] [15] F. Móricz, F. Schipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140. | Zbl 0795.42016
[015] [16] N. M. Rivière and Y. Sagher, Interpolation between and , the real method, J. Funct. Anal. 14 (1973), 401-409. | Zbl 0295.46056
[016] [17] F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 189-195.
[017] [18] F. Schipp and P. Simon, On some -type maximal inequalities with respect to the Walsh-Paley system, in: Functions, Series, Operators, Budapest, 1980, Colloq. Math. Soc. János Bolyai 35, North-Holland, Amsterdam, 1981, 1039-1045.
[018] [19] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[019] [20] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. | Zbl 0621.42001
[020] [21] F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), 229-242. | Zbl 0866.42020
[021] [22] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049
[022] [23] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. | Zbl 0085.05601