On compact symplectic and Kählerian solvmanifolds which are not completely solvable
Tralle, Aleksy
Colloquium Mathematicae, Tome 72 (1997), p. 261-283 / Harvested from The Polish Digital Mathematics Library

We are interested in the problem of describing compact solvmanifolds admitting symplectic and Kählerian structures. This was first considered in [3, 4] and [7]. These papers used the Hattori theorem concerning the cohomology of solvmanifolds hence the results obtained covered only the completely solvable case}. Our results do not use the assumption of complete solvability. We apply our methods to construct a new example of a compact symplectic non-Kählerian solvmanifold.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210490
@article{bwmeta1.element.bwnjournal-article-cmv73i2p261bwm,
     author = {Aleksy Tralle},
     title = {On compact symplectic and K\"ahlerian solvmanifolds which are not completely solvable},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {261-283},
     zbl = {0879.53025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv73i2p261bwm}
}
Tralle, Aleksy. On compact symplectic and Kählerian solvmanifolds which are not completely solvable. Colloquium Mathematicae, Tome 72 (1997) pp. 261-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv73i2p261bwm/

[000] [1] E. Abbena, An example of an almost Kähler manifold which is not Kählerian, Boll. Un. Mat. Ital. (6) 3-A (1984), 383-392. | Zbl 0559.53023

[001] [2] L. Auslander, An exposition of the structure of solvmanifolds, Bull. Amer. Math. Soc. 79 (1973), 227-285. | Zbl 0265.22016

[002] [3] C. Benson and C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. | Zbl 0672.53036

[003] [4] C. Benson and C. S. Gordon, Kähler structures on compact solvmanifolds, Proc. Amer. Math. Soc. 108 (1990), 971-980. | Zbl 0689.53036

[004] [5] L. A. Cordero, M. Fernandez and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. | Zbl 0596.53030

[005] [6] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl 0312.55011

[006] [7] M. Fernández, M. de León and M. Saralegui, A six-dimensional compact symplectic solvmanifold without Kähler structures, Osaka J. Math. 33 (1996), 19-35. | Zbl 0861.53032

[007] [8] R. Gompf, Some new symplectic 4-manifolds, Turkish J. Math. 18 (1994), 7-15. | Zbl 0863.53025

[008] [9] S. Halperin, Lectures on Minimal Models, Hermann, 1982.

[009] [10] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 67-71. | Zbl 0691.53040

[010] [11] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. 1 8 (1960), 289-331. | Zbl 0099.18003

[011] [12] K. Hess, Twisted tensor products of DGA's and the Adams-Hilton model for the total space of a fibration, in: London Math. Soc. Lecture Note Ser. 175, Cambridge Univ. Press, 1992, 29-51. | Zbl 0763.55006

[012] [13] D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449. | Zbl 0146.19201

[013] [14] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977).

[014] [15] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. | Zbl 0789.55010

[015] [16] D. McDuff, Examples of symplectic simply connected manifolds with no Kähler structure, J. Differential Geom. 20 (1984), 267-277. | Zbl 0567.53031

[016] [17] C. McCord and J. Oprea, Rational Lusternik-Schnirelmann category and the Arnold conjecture for nilmanifolds, Topology 32 (1993), 701-717. | Zbl 0798.58017

[017] [18] G. D. Mostow, Factor spaces of solvable groups, Annals of Math. 60 (1954), 1-27. | Zbl 0057.26103

[018] [19] M. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972. | Zbl 0254.22005

[019] [20] M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, preprint (1992), 44 pp. | Zbl 0813.55004

[020] [21] J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505. | Zbl 0045.26003

[021] [22] N. Steenrod, The Topology of Fiber Bundles, Princeton Univ. Press, 1951. | Zbl 0054.07103

[022] [23] D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer, 1983.

[023] [24] J.-C. Thomas, Homotopie rationnelle des fibrés de Serre, Université des Sciences et Techniques de Lille I, 1980.

[024] [25] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. | Zbl 0446.55009

[025] [26] E. Vinberg, V. Gorbatsevich and O. Shvartsman, Discrete Subgroups of Lie Groups, Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki 21 (1988), 5-115 (in Russian). | Zbl 0656.22004