On the Witt rings of function fields of quasihomogeneous varieties
Jaworski, Piotr
Colloquium Mathematicae, Tome 72 (1997), p. 195-219 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210486
@article{bwmeta1.element.bwnjournal-article-cmv73i2p195bwm,
     author = {Piotr Jaworski},
     title = {On the Witt rings of function fields of quasihomogeneous varieties},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {195-219},
     zbl = {0923.11063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv73i2p195bwm}
}
Jaworski, Piotr. On the Witt rings of function fields of quasihomogeneous varieties. Colloquium Mathematicae, Tome 72 (1997) pp. 195-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv73i2p195bwm/

[000] [1] N. Bourbaki, Commutative Algebra, Hermann, 1972.

[001] [2] F. Fernández-Carmena, On the injectivity of the map of the Witt group of a scheme into the Witt group of its function field, Math. Ann. 277 (1987), 453-468. | Zbl 0641.14003

[002] [3] R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.

[003] [4] P. Jaworski, About the Witt rings of function fields of algebroid quadratic quasihomogeneous surfaces, Math. Z. 218 (1995), 319-342. | Zbl 0827.13010

[004] [5] P. Jaworski, About the Milnor's K-theory of function fields of quasihomogeneous cones, K-Theory 10 (1996), 83-105. | Zbl 0844.19003

[005] [6] M. Knebusch, Symmetric bilinear forms over algebraic varieties, in: Conference on Quadratic Forms (Kingston 1976), Queen's Papers in Pure and Appl. Math. 46 1977, 102-283.

[006] [7] T. Y. Lam, Algebraic Theory of Quadratic Forms, Benjamin, Reading, Mass., 1973.

[007] [8] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer, Berlin, 1973.

[008] [9] M. Ojanguren, The Witt Group and the Problem of Lüroth, ETS Editrice Pisa, 1990.

[009] [10] W. Pardon, A relation between Witt group of a regular local ring and the Witt groups of its residue class fields, preprint.

[010] [11] W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin, 1985. | Zbl 0584.10010

[011] [12] P. Wagreich, The structure of quasihomogeneous singularities, in: Singularities, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 593-611. | Zbl 0545.14028