@article{bwmeta1.element.bwnjournal-article-cmv73i2p195bwm, author = {Piotr Jaworski}, title = {On the Witt rings of function fields of quasihomogeneous varieties}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {195-219}, zbl = {0923.11063}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv73i2p195bwm} }
Jaworski, Piotr. On the Witt rings of function fields of quasihomogeneous varieties. Colloquium Mathematicae, Tome 72 (1997) pp. 195-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv73i2p195bwm/
[000] [1] N. Bourbaki, Commutative Algebra, Hermann, 1972.
[001] [2] F. Fernández-Carmena, On the injectivity of the map of the Witt group of a scheme into the Witt group of its function field, Math. Ann. 277 (1987), 453-468. | Zbl 0641.14003
[002] [3] R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
[003] [4] P. Jaworski, About the Witt rings of function fields of algebroid quadratic quasihomogeneous surfaces, Math. Z. 218 (1995), 319-342. | Zbl 0827.13010
[004] [5] P. Jaworski, About the Milnor's K-theory of function fields of quasihomogeneous cones, K-Theory 10 (1996), 83-105. | Zbl 0844.19003
[005] [6] M. Knebusch, Symmetric bilinear forms over algebraic varieties, in: Conference on Quadratic Forms (Kingston 1976), Queen's Papers in Pure and Appl. Math. 46 1977, 102-283.
[006] [7] T. Y. Lam, Algebraic Theory of Quadratic Forms, Benjamin, Reading, Mass., 1973.
[007] [8] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer, Berlin, 1973.
[008] [9] M. Ojanguren, The Witt Group and the Problem of Lüroth, ETS Editrice Pisa, 1990.
[009] [10] W. Pardon, A relation between Witt group of a regular local ring and the Witt groups of its residue class fields, preprint.
[010] [11] W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin, 1985. | Zbl 0584.10010
[011] [12] P. Wagreich, The structure of quasihomogeneous singularities, in: Singularities, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 593-611. | Zbl 0545.14028