We prove that there exist no stable minimal submanifolds in some n-dimensional ellipsoids, which generalizes J. Simons' result about the unit sphere and gives a partial answer to Lawson–Simons' conjecture.
@article{bwmeta1.element.bwnjournal-article-cmv73i1p1bwm, author = {Haizhong Li}, title = {Some nonexistence theorems on stable minimal submanifolds}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {1-13}, zbl = {0880.53050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p1bwm} }
Li, Haizhong. Some nonexistence theorems on stable minimal submanifolds. Colloquium Mathematicae, Tome 72 (1997) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p1bwm/
[000] [FF] H. Federer and W. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520. | Zbl 0187.31301
[001] [LS] H. B. Lawson Jr. and J. Simons, On stable currents and their applications in real and complex projective space, ibid. 98 (1973), 427-450.
[002] [L1] P. F. Leung, Minimal submanifolds in a sphere, Math. Z. 183 (1983), 75-86. | Zbl 0491.53045
[003] [L2] P. F. Leung, An estimate on the Ricci curvature on a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), 1051-1061. | Zbl 0753.53003
[004] [M] H. Mori, Notes on stable currents, Pacific J. Math. 61 (1975), 235-240. | Zbl 0329.49030
[005] [O] Y. Ohnita, Stable minimal submanifolds in compact rank one symmetric spaces, Tôhoku Math. J. 38 (1986), 199-217. | Zbl 0594.53037
[006] [PS] Y. L. Pan and Y. B. Shen, Stability of harmonic maps and minimal immersions, Proc. Amer. Math. Soc. 93 (1985), 111-117. | Zbl 0527.58010
[007] [S] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105. | Zbl 0181.49702