Some nonexistence theorems on stable minimal submanifolds
Li, Haizhong
Colloquium Mathematicae, Tome 72 (1997), p. 1-13 / Harvested from The Polish Digital Mathematics Library

We prove that there exist no stable minimal submanifolds in some n-dimensional ellipsoids, which generalizes J. Simons' result about the unit sphere and gives a partial answer to Lawson–Simons' conjecture.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210476
@article{bwmeta1.element.bwnjournal-article-cmv73i1p1bwm,
     author = {Haizhong Li},
     title = {Some nonexistence theorems on stable minimal submanifolds},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {1-13},
     zbl = {0880.53050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p1bwm}
}
Li, Haizhong. Some nonexistence theorems on stable minimal submanifolds. Colloquium Mathematicae, Tome 72 (1997) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p1bwm/

[000] [FF] H. Federer and W. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520. | Zbl 0187.31301

[001] [LS] H. B. Lawson Jr. and J. Simons, On stable currents and their applications in real and complex projective space, ibid. 98 (1973), 427-450.

[002] [L1] P. F. Leung, Minimal submanifolds in a sphere, Math. Z. 183 (1983), 75-86. | Zbl 0491.53045

[003] [L2] P. F. Leung, An estimate on the Ricci curvature on a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), 1051-1061. | Zbl 0753.53003

[004] [M] H. Mori, Notes on stable currents, Pacific J. Math. 61 (1975), 235-240. | Zbl 0329.49030

[005] [O] Y. Ohnita, Stable minimal submanifolds in compact rank one symmetric spaces, Tôhoku Math. J. 38 (1986), 199-217. | Zbl 0594.53037

[006] [PS] Y. L. Pan and Y. B. Shen, Stability of harmonic maps and minimal immersions, Proc. Amer. Math. Soc. 93 (1985), 111-117. | Zbl 0527.58010

[007] [S] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105. | Zbl 0181.49702