In this paper we introduce atomic Hardy spaces on the product domain and prove that rough singular integral operators with Hardy space function kernels are bounded on . This is an extension of some well known results.
@article{bwmeta1.element.bwnjournal-article-cmv73i1p15bwm, author = {Yong Ding}, title = {Rough singular integral operators with Hardy space function kernels on a product domain}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {15-23}, zbl = {0881.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p15bwm} }
Ding, Yong. Rough singular integral operators with Hardy space function kernels on a product domain. Colloquium Mathematicae, Tome 72 (1997) pp. 15-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p15bwm/
[000] [1] J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (4) (1986), 185-206. | Zbl 0568.42011
[001] [2] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. | Zbl 0568.42012
[002] [3] R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. 4 (1981), 195-201. | Zbl 0466.42007
[003] [4] Y. S. Jiang and S. Z. Lu, A class of singular integral operators with rough kernel on product domains, Hokkaido Math. J. 24 (1995), 1-7.
[004] [5] D. K. Watson, The Hardy space kernel condition for rough integrals, preprint.