On rings whose flat modules form a Grothendieck category
Garcia, J. ; Simson, D.
Colloquium Mathematicae, Tome 72 (1997), p. 115-141 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210472
@article{bwmeta1.element.bwnjournal-article-cmv73i1p115bwm,
     author = {J. Garcia and D. Simson},
     title = {On rings whose flat modules form a Grothendieck category},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {115-141},
     zbl = {0877.16003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p115bwm}
}
Garcia, J.; Simson, D. On rings whose flat modules form a Grothendieck category. Colloquium Mathematicae, Tome 72 (1997) pp. 115-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv73i1p115bwm/

[000] [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1992. | Zbl 0765.16001

[001] [2] P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), 1-16. | Zbl 0627.16031

[002] [3] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. | Zbl 0834.16001

[003] [4] K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 115-135. | Zbl 0325.16024

[004] [5] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. | Zbl 0201.35602

[005] [6] J. L. García and J. Martínez, Purity through Gabriel's functor rings, Bull. Soc. Math. Belgique 45 (1993), 137-152. | Zbl 0804.18008

[006] [7] J. L. García and J. Martínez, When is the category of flat modules abelian?, Fund. Math. 147 (1995), 83-91. | Zbl 0843.16002

[007] [8] J. L. García and J. J. Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), 39-56. | Zbl 0747.16007

[008] [9] J. Gómez Torrecillas, Rings whose flat modules are torsionfree, Ph.D. Thesis, University of Granada, 1992.

[009] [10] J. Gómez Torrecillas, FTF rings, preprint.

[010] [11] J. Gómez Torrecillas and B. Torrecillas, Flat torsionfree modules and QF-3 rings, Osaka J. Math. 30 (1993), 529-542. | Zbl 0803.16031

[011] [12] M. Hoshino and S. Takashima, On Lambek torsion theories II, ibid. 31 (1994), 729-746. | Zbl 0823.16020

[012] [13] C. U. Jensen and H. Lenzing, Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules, Algebra Logic Appl. 2, Gordon & Breach, 1989.

[013] [14] C. U. Jensen and D. Simson, Purity and generalized chain conditions, J. Pure Appl. Algebra 14 (1979), 297-305. | Zbl 0407.18003

[014] [15] S. Jøndrup and D. Simson, Indecomposable modules over semiperfect rings, J. Algebra 73 (1981), 23-29. | Zbl 0496.16033

[015] [16] M. G. Leeney, LLI rings and modules of type LP, Comm. Algebra 20 (1992), 943-953. | Zbl 0757.16002

[016] [17] L. H. Rowen, Finitely presented modules over semiperfect rings, Proc. Amer. Math. Soc. 97 (1986), 1-7. | Zbl 0596.16020

[017] [18] L. H. Rowen, Finitely presented modules over semiperfect rings satisfying ACC-∞, J. Algebra 107 (1987), 284-291. | Zbl 0615.16016

[018] [19] D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380. | Zbl 0328.18005

[019] [20] D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116. | Zbl 0361.18010

[020] [21] D. Simson, On pure semisimple Grothendieck categories I, ibid. 100 (1978), 211-222. | Zbl 0392.18012

[021] [22] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992. | Zbl 0818.16009

[022] [23] J. P. Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455-472. | Zbl 0198.35803

[023] [24] B. Stenström, Rings of Quotients, Springer, Berlin, 1975.

[024] [25] H. Tachikawa, QF-3 rings and categories of projective modules, J. Algebra 28 (1974), 408-413. | Zbl 0281.16009

[025] [26] R. Wisbauer, Foundations of Module and Ring Theory, Algebra Logic Appl. 3, Gordon & Breach, 1991.

[026] [27] K. Yamagata, Frobenius algebras, in: Handbook of Algebra, M. Hazewinkel, (ed.), Vol. 1, North-Holland, Amsterdam, 1996, 841-887. | Zbl 0879.16008