@article{bwmeta1.element.bwnjournal-article-cmv72i2p281bwm, author = {Grzegorz Zwara}, title = {Degenerations in the Module Varieties of Generalized Standard Auslander-Reiten Components}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {281-303}, zbl = {0890.16006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p281bwm} }
Zwara, Grzegorz. Degenerations in the Module Varieties of Generalized Standard Auslander-Reiten Components. Colloquium Mathematicae, Tome 72 (1997) pp. 281-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p281bwm/
[000] [1] S. Abeasis and A. del Fra, Degenerations for the representations of a quiver of type , J. Algebra 93 (1985), 376-412. | Zbl 0598.16030
[001] [2] I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305-331. | Zbl 0696.16023
[002] [3] I. Assem and A. Skowroński, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992), 31-61. | Zbl 0796.16014
[003] [4] I. Assem and A. Skowroński, Multicoil algebras, in: Representations of Algebras, CMS Conf. Proc. 14 (1993), 29-68. | Zbl 0827.16010
[004] [5] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19 (1995), 453-478. | Zbl 0860.16014
[005] [6] M. Auslander, Representation theory of finite dimensional algebras, in: Contemp. Math. 13, Amer. Math. Soc., 1982, 27-39. | Zbl 0529.16020
[006] [7] M. Auslander and I. Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), 280-301. | Zbl 0539.16011
[007] [8] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge University Press, 1995.
[008] [9] K. Bongartz, On a result of Bautista and Smalø, Comm. Algebra 11 (1983), 2123-2124.
[009] [10] K. Bongartz, A generalization of a theorem of M. Auslander, Bull. London Math. Soc. 21 (1989), 255-256. | Zbl 0669.16018
[010] [11] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. in Math., to appear. | Zbl 0862.16007
[011] [12] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 69 (1994), 575-611. | Zbl 0832.16008
[012] [13] K. Bongartz, Degenerations for representations of tame quivers, Ann. Sci. Ecole Norm. Sup. 28 (1995), 647-668. | Zbl 0844.16007
[013] [14] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294. | Zbl 0446.16032
[014] [15] H. Kraft, Geometric methods in representation theory, in: Representations of Algebras, Lecture Notes in Math. 944, Springer, 1982, 180-258.
[015] [16] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. 45 (1992), 32-54. | Zbl 0703.16010
[016] [17] S. Liu, Semistable components of an Auslander-Reiten quiver, ibid. 47 (1993), 405-416. | Zbl 0818.16015
[017] [18] C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. Ecole Norm. Sup. 4 (1986), 275-301. | Zbl 0603.16025
[018] [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[019] [20] A. Skowroński, Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math. 30 (1993), 515-527. | Zbl 0818.16017
[020] [21] A. Skowroński, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO ASI Ser. C 424, Kluwer Acad. Publ., Dordrecht, 1994, 309-345. | Zbl 0819.16013
[021] [22] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543. | Zbl 0828.16011
[022] [23] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 173-183. | Zbl 0865.16011
[023] [24] A. Skowroński, Tame algebras with simply connected Galois coverings, preprint, Toruń, 1995.
[024] [25] A. Skowroński and G. Zwara, On degenerations of modules with nondirecting indecomposable summands, Canad. J. Math., in press. | Zbl 0867.16006