Sidon sets and Riesz sets for some measure algebras on the disk
Gebuhrer, Olivier ; Schwartz, Alan
Colloquium Mathematicae, Tome 72 (1997), p. 269-279 / Harvested from The Polish Digital Mathematics Library

Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210464
@article{bwmeta1.element.bwnjournal-article-cmv72i2p269bwm,
     author = {Olivier Gebuhrer and Alan Schwartz},
     title = {Sidon sets and Riesz sets for some measure algebras on the disk},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {269-279},
     zbl = {0868.43006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p269bwm}
}
Gebuhrer, Olivier; Schwartz, Alan. Sidon sets and Riesz sets for some measure algebras on the disk. Colloquium Mathematicae, Tome 72 (1997) pp. 269-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p269bwm/

[000] [AT74] H. Annabi et K. Trimèche, Convolution généralisée sur le disque unité, C. R. Acad. Sci. Paris 278 (1974), 21-24. | Zbl 0273.43009

[001] [BG91] M. Bouhaik and L. Gallardo, A Mehler-Heine formula for disk polynomials, Indag. Math. 1 (1991), 9-18. | Zbl 0727.33003

[002] [BG92] M. Bouhaik and L. Gallardo, Un théorème limite central dans un hypergroupe bidimensionnel, Ann. Inst. H. Poincaré 28 (1992), 47-61. | Zbl 0748.60025

[003] [BH95] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Stud. Math. 20, de Gruyter, Berlin, New York, 1995.

[004] [CS92] W. C. Connett and A. L. Schwartz, Fourier analysis off groups, in: The Madison Symposium on Complex Analysis (Providence, R.I.), A. Nagel and L. Stout (eds.), Contemp. Math. 137, Amer. Math. Soc. 1992, 169-176. | Zbl 0779.43004

[005] [CS95] W. C. Connett and A. L. Schwartz, Continuous 2-variable polynomial hypergroups, in: Applications of Hypergroups and Related Measure Algebras (Providence, R.I.), O. Gebuhrer, W. C. Connett and A. L. Schwartz (eds.), Contemp. Math. 183, Amer. Math. Soc., 1995, 89-109. | Zbl 0828.43006

[006] [Edw67] R. E. Edwards, Fourier Series, Vols. I, II, Holt, Rinehart and Winston, New York, 1967.

[007] [HK93] H. Heyer and S. Koshi, Harmonic Analysis on the Disk Hypergroup, Mathematical Seminar Notes, Tokyo Metropolitan University, 1993.

[008] [Kan76] Y. Kanjin, A convolution measure algebra on the unit disc, Tôhoku Math. J. (2) 28 (1976), 105-115.

[009] [Kan85] Y. Kanjin, Banach algebra related to disk polynomials, ibid. 37 (1985), 395-404.

[010] [Koo72] T. H. Koornwinder, The addition formula for Jacobi polynomials, II, the Laplace type integral representation and the product formula, Tech. Report TW 133/72, Mathematisch Centrum, Amsterdam, 1972. | Zbl 0247.33018

[011] [Koo78] T. H. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2) 18 (1978), 101-114. | Zbl 0386.33009

[012] [Rud62] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, 1962.

[013] [Sze67] G. Szegő, Orthogonal Polynomials, 2nd ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, R.I., 1967.