Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.
@article{bwmeta1.element.bwnjournal-article-cmv72i2p269bwm, author = {Olivier Gebuhrer and Alan Schwartz}, title = {Sidon sets and Riesz sets for some measure algebras on the disk}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {269-279}, zbl = {0868.43006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p269bwm} }
Gebuhrer, Olivier; Schwartz, Alan. Sidon sets and Riesz sets for some measure algebras on the disk. Colloquium Mathematicae, Tome 72 (1997) pp. 269-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p269bwm/
[000] [AT74] H. Annabi et K. Trimèche, Convolution généralisée sur le disque unité, C. R. Acad. Sci. Paris 278 (1974), 21-24. | Zbl 0273.43009
[001] [BG91] M. Bouhaik and L. Gallardo, A Mehler-Heine formula for disk polynomials, Indag. Math. 1 (1991), 9-18. | Zbl 0727.33003
[002] [BG92] M. Bouhaik and L. Gallardo, Un théorème limite central dans un hypergroupe bidimensionnel, Ann. Inst. H. Poincaré 28 (1992), 47-61. | Zbl 0748.60025
[003] [BH95] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Stud. Math. 20, de Gruyter, Berlin, New York, 1995.
[004] [CS92] W. C. Connett and A. L. Schwartz, Fourier analysis off groups, in: The Madison Symposium on Complex Analysis (Providence, R.I.), A. Nagel and L. Stout (eds.), Contemp. Math. 137, Amer. Math. Soc. 1992, 169-176. | Zbl 0779.43004
[005] [CS95] W. C. Connett and A. L. Schwartz, Continuous 2-variable polynomial hypergroups, in: Applications of Hypergroups and Related Measure Algebras (Providence, R.I.), O. Gebuhrer, W. C. Connett and A. L. Schwartz (eds.), Contemp. Math. 183, Amer. Math. Soc., 1995, 89-109. | Zbl 0828.43006
[006] [Edw67] R. E. Edwards, Fourier Series, Vols. I, II, Holt, Rinehart and Winston, New York, 1967.
[007] [HK93] H. Heyer and S. Koshi, Harmonic Analysis on the Disk Hypergroup, Mathematical Seminar Notes, Tokyo Metropolitan University, 1993.
[008] [Kan76] Y. Kanjin, A convolution measure algebra on the unit disc, Tôhoku Math. J. (2) 28 (1976), 105-115.
[009] [Kan85] Y. Kanjin, Banach algebra related to disk polynomials, ibid. 37 (1985), 395-404.
[010] [Koo72] T. H. Koornwinder, The addition formula for Jacobi polynomials, II, the Laplace type integral representation and the product formula, Tech. Report TW 133/72, Mathematisch Centrum, Amsterdam, 1972. | Zbl 0247.33018
[011] [Koo78] T. H. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2) 18 (1978), 101-114. | Zbl 0386.33009
[012] [Rud62] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, 1962.
[013] [Sze67] G. Szegő, Orthogonal Polynomials, 2nd ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, R.I., 1967.