Extreme non-Arens regularity of quotients of the Fourier algebra A(G)
Hu, Zhiguo
Colloquium Mathematicae, Tome 72 (1997), p. 237-249 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210462
@article{bwmeta1.element.bwnjournal-article-cmv72i2p237bwm,
     author = {Zhiguo Hu},
     title = {Extreme non-Arens regularity of quotients of the Fourier algebra A(G)},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {237-249},
     zbl = {0868.22009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p237bwm}
}
Hu, Zhiguo. Extreme non-Arens regularity of quotients of the Fourier algebra A(G). Colloquium Mathematicae, Tome 72 (1997) pp. 237-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p237bwm/

[000] [1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. | Zbl 0044.32601

[001] [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973. | Zbl 0271.46039

[002] [3] C. Chou, Topological invariant means on the von Neumann algebra VN(G), Trans. Amer. Math. Soc. 273 (1982), 207-229. | Zbl 0507.22007

[003] [4] J. Duncan and S. A. R. Hosseinium, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh 84A (1979), 309-325. | Zbl 0427.46028

[004] [5] C. Dunkl and D. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501-514.

[005] [6] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. | Zbl 0169.46403

[006] [7] B. Forrest, Amenability and bounded approximate identities in ideals of A(G), Illinois J. Math. 34 (1990), 1-25. | Zbl 0712.43002

[007] [8] B. Forrest, Arens regularity and discrete groups, Pacific J. Math. 151 (1991), 217-227. | Zbl 0746.43002

[008] [9] B. Forrest, Arens regularity and the Ap(G) algebras, Proc. Amer. Math. Soc. 119 (1993), 595-598.

[009] [10] E. E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371-382. | Zbl 0292.43015

[010] [11] E. E. Granirer, On some properties of the Banach algebras Ap(G) for locally compact groups, Proc. Amer. Math. Soc. 95 (1985), 375-381. | Zbl 0599.43005

[011] [12] E. E. Granirer, On convolution operators with small support which are far from being convolution by a bounded measure, Colloq. Math. 67 (1994), 33-60; Erratum, 69 (1995), 155. | Zbl 0841.43008

[012] [13] E. E. Granirer, Day points for quotients of the Fourier algebra A(G), extreme nonergodicity of their duals and extreme non-Arens regularity, Illinois J. Math., to appear. | Zbl 0855.43004

[013] [14] E. E. Granirer, On the set of topologically invariant means on an algebra of convolution operators on Lp(G), Proc. Amer. Math. Soc., to appear. | Zbl 0853.43007

[014] [15] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, New York, 1979. | Zbl 0416.43001

[015] [16] Z. Hu, On the set of topologically invariant means on the von Neumann algebra VN(G), Illinois J. Math. 39 (1995), 463-490. | Zbl 0840.22012

[016] [17] Z. Hu, The von Neumann algebra VN(G) of a locally compact group and quotients of its subspaces, preprint. | Zbl 0905.22006

[017] [18] A. T. Lau, The second conjugate of the Fourier algebra of a locally compact group, Trans. Amer. Math. Soc. 267 (1981), 53-63. | Zbl 0489.43006

[018] [19] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, 1977. | Zbl 0362.46013

[019] [20] K. Musiał, The weak Radon-Nikodym property in Banach spaces, Studia Math. 54 (1979), 151-173. | Zbl 0405.46015

[020] [21] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. 15 (1965), 84-104. | Zbl 0135.35503

[021] [22] A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math. 143 (1990), 377-399. | Zbl 0734.46032