Spectral properties of skew-product diffeomorphisms of tori
Iwanik, A.
Colloquium Mathematicae, Tome 72 (1997), p. 223-235 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210461
@article{bwmeta1.element.bwnjournal-article-cmv72i2p223bwm,
     author = {A. Iwanik},
     title = {Spectral properties of skew-product diffeomorphisms of tori},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {223-235},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p223bwm}
}
Iwanik, A. Spectral properties of skew-product diffeomorphisms of tori. Colloquium Mathematicae, Tome 72 (1997) pp. 223-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p223bwm/

[00000] [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.

[00001] [B] L. Baggett, On functions that are trivial cocycles for a set of irrationals, Proc. Amer. Math. Soc. 104 (1988), 1212-1217.

[00002] [C] G. H. Choe, Spectral properties of cocycles, Ph.D. Thesis, University of California, Berkeley, 1987.

[00003] [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.

[00004] [F] K. Frączek, Spectral properties of cocycles over rotations, preprint.

[00005] [I1] A. Iwanik, Approximation by periodic transformations and diophantine approximation of the spectrum, in: Ergodic Theory of Zd-Actions, Proc. Warwick Symposium 1993-4, Cambridge Univ. Press, 1996, 387-401.

[00006] [I2] A. Iwanik, Generic smooth cocycles of degree zero over irrational rotations, Studia Math. 115 (1995), 241-250.

[00007] [I3] A. Iwanik, Cyclic approximation of analytic cocycles over irrational rotations, Colloq. Math. 70 (1996), 73-78.

[00008] [I4] A. Iwanik, Anzai skew products with Lebesgue component of infinite multiplicity, Bull. London Math. Soc., to appear.

[00009] [ILR] A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95.

[00010] [IS] A. Iwanik and J. Serafin, Most monothetic extensions are rank-1, Colloq. Math. 66 (1993), 63-76.

[00011] [JP] R. Jones and W. Parry, Compact abelian group extensions of dynamical systems II, Compositio Math. 25 (1972), 135-147.

[00012] [KS] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (5) (1967), 81-106 (in Russian).

[00013] [K] A. G. Kushnirenko, Spectral properties of some dynamical systems with polynomial divergence of orbits, Vestnik Moskov. Univ. 1974 (1), 101-108 (in Russian).

[00014] [R] A. Robinson, Non-abelian extensions have nonsimple spectrum, Compositio Math. 65 (1988), 155-170.

[00015] [Z] Q. Zhang, Rigidity of smooth cocycles over irrational rotations, preprint.