The aim of this paper is an investigation of topological algebras with an orthogonal sequence which is total. Closed prime ideals or closed maximal ideals are kernels of multiplicative functionals and the continuous multiplicative functionals are given by the “coefficient functionals”. Our main result states that an orthogonal total sequence in a unital Fréchet algebra is already a Schauder basis. Further we consider algebras with a total sequence satisfying and for all n ∈ ℕ.
@article{bwmeta1.element.bwnjournal-article-cmv72i2p215bwm, author = {Hermann Render}, title = {Topological algebras with an orthogonal total sequence}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {215-222}, zbl = {0906.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p215bwm} }
Render, Hermann. Topological algebras with an orthogonal total sequence. Colloquium Mathematicae, Tome 72 (1997) pp. 215-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p215bwm/
[000] [1] M. Akkar, M. El Azhari and M. Oudadess, Continuité des caractères dans les algèbres de Fréchet à bases, Canad. Math. Bull. 31 (1988), 168-174. | Zbl 0663.46046
[001] [2] R. M. Brooks, A ring of analytic functions, Studia Math. 24 (1964), 191-210. | Zbl 0199.46201
[002] [3] R. M. Brooks, A ring of analytic functions, II, ibid. 39 (1971), 199-208. | Zbl 0213.40303
[003] [4] R. Brück and J. Müller, Invertible elements in a convolution algebra of holomorphic functions, Math. Ann. 294 (1992), 421-438. | Zbl 0769.30002
[004] [5] R. Brück and J. Müller, Closed ideals in a convolution algebra of holomorphic functions, Canad. J. Math. 47 (1995), 915-928. | Zbl 0836.30002
[005] [6] S. El-Helaly and T. Husain, Orthogonal bases are Schauder bases and a characterization of Φ-algebras, Pacific J. Math. 132 (1988), 265-275. | Zbl 0654.46011
[006] [7] S. El-Helaly and T. Husain, Orthogonal bases characterizations of the Banach algebras and , Math. Japon. 37 (1992), 649-655. | Zbl 0763.46040
[007] [8] H. Goldmann, Uniform Fréchet Algebras, North-Holland, Amsterdam, 1990.
[008] [9] T. Husain, Positive functionals on topological algebras with bases, Math. Japon. 28 (1983), 683-687. | Zbl 0535.46023
[009] [10] T. Husain and J. Liang, Multiplicative functionals on Fréchet algebras with bases, Canad. J. Math. 29 (1977), 270-276. | Zbl 0348.46036
[010] [11] T. Husain and S. Watson, Topological algebras with orthogonal bases, Pacific J. Math. 91 (1980), 339-347. | Zbl 0477.46042
[011] [12] T. Husain and S. Watson, Algebras with unconditional orthogonal bases, Proc. Amer. Math. Soc. 79 (1980), 539-545. | Zbl 0434.46029
[012] [13] H. Render and A. Sauer, Algebras of holomorphic functions with Hadamard multiplication, Studia Math. 118 (1996), 77-100. | Zbl 0855.46032
[013] [14] S. W. Warsi and T. Husain, Pil-algebras, Math. Japon. 36 (1991), 983-986.
[014] [15] W. Żelazko, Banach Algebras, Elsevier, Amsterdam, 1973.
[015] [16] W. Żelazko, Metric generalizations of Banach algebras, Dissertationes Math. 47 (1965). | Zbl 0131.13005
[016] [17] W. Żelazko, Functional continuity of commutative m-convex -algebras with countable maximal ideal spaces, Colloq. Math. 51 (1987), 395-399. | Zbl 0632.46041