Very small sets
Judah, Haim ; Lior, Amiran ; Recław, Ireneusz
Colloquium Mathematicae, Tome 72 (1997), p. 207-213 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210459
@article{bwmeta1.element.bwnjournal-article-cmv72i2p207bwm,
     author = {Haim Judah and Amiran Lior and Ireneusz Rec\l aw},
     title = {Very small sets},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {207-213},
     zbl = {0868.04001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p207bwm}
}
Judah, Haim; Lior, Amiran; Recław, Ireneusz. Very small sets. Colloquium Mathematicae, Tome 72 (1997) pp. 207-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i2p207bwm/

[000] [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, Acta Univ. Carolin. 34 (1993), 7-9.

[001] [CP] J. Cichoń and J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symbolic Logic 51 (1986), 560-569. | Zbl 0622.03035

[002] [FJ] D. H. Fremlin and J. Jasiński, Gδ-covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986), 518-538. | Zbl 0591.54028

[003] [GM] F. Galvin and A. W. Miller, γ-sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155.

[004] [K] A. Kechris, Lectures on Classical Descriptive Set Theory, Springer, Berlin, 1995. | Zbl 0819.04002

[005] [M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, 201-233.

[006] [P] J. Pawlikowski, Every Sierpiński set is strongly meagre, preprint. | Zbl 0871.04003

[007] [PR] J. Pawlikowski and I. Recław, Parametrized Cichoń's diagram and small sets, Fund. Math. 147 (1995), 135-155. | Zbl 0847.04004

[008] [R] I. Recław, Every Lusin set is undetermined in the point-open game, ibid. 144 (1995), 43-54. | Zbl 0809.04002

[009] [R1] I. Recław, On small sets in the sense of measure and category, ibid. 133 (1989), 255-260. | Zbl 0707.28001