Let m: ℝ → ℝ be a function of bounded variation. We prove the -boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by where for a family of functions satisfying conditions (1.1)-(1.3) given below.
@article{bwmeta1.element.bwnjournal-article-cmv72i1p9bwm,
author = {T. Godoy and L. Saal and M. Urciuolo},
title = {On some singular integral operatorsclose to the Hilbert transform},
journal = {Colloquium Mathematicae},
volume = {72},
year = {1997},
pages = {9-17},
zbl = {0869.42003},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p9bwm}
}
Godoy, T.; Saal, L.; Urciuolo, M. On some singular integral operatorsclose to the Hilbert transform. Colloquium Mathematicae, Tome 72 (1997) pp. 9-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p9bwm/
[000] [D-R] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators, Invent. Math. 84 (1986), 541-561.
[001] T. Godoy, L. Saal and M. Urciuolo, About certain singular kernels , Math. Scand. 74 (1994), 98-110. | Zbl 0822.42009
[002] [G-U] T. Godoy and M. Urciuolo, About the -boundedness of integral operators with kernels of the form , Math. Scand., to appear. | Zbl 0874.42010
[003] [R-S] F. Ricci and P. Sjögren, Two parameter maximal functions in the Heisenberg group, Math Z. 199 (1988), 565-575. | Zbl 0638.42019
[004] [S] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. | Zbl 0207.13501