Inégalité de Harnack elliptique sur les graphes
Delmotte, T.
Colloquium Mathematicae, Tome 72 (1997), p. 19-37 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210453
@article{bwmeta1.element.bwnjournal-article-cmv72i1p19bwm,
     author = {T. Delmotte},
     title = {In\'egalit\'e de Harnack elliptique sur les graphes},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {19-37},
     zbl = {0871.31008},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p19bwm}
}
Delmotte, T. Inégalité de Harnack elliptique sur les graphes. Colloquium Mathematicae, Tome 72 (1997) pp. 19-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p19bwm/

[000] [BCLSC] D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J., à paraître.

[001] [B] N. Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A 286 (1978), 139-142. | Zbl 0368.46037

[002] [CKS] E. Carlen, S. Kusuoka and D. Stroock, Upper bounds for symmetric Mar- kov functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 245-287. | Zbl 0634.60066

[003] [CSC1] T. Coulhon et L. Saloff-Coste, Puissances d'un opérateur régularisant, ibid. 26 (1990), 419-436. | Zbl 0709.47042

[004] [CSC2] T. Coulhon et L. Saloff-Coste, Isopérimétrie sur les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293-314.

[005] [CW] R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, 1971.

[006] [G] A. A. Grigor'yan, The heat equation on noncompact Riemannian manifolds, Math. USSR-Sb. 72 (1992), 47-77.

[007] [JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. | Zbl 0102.04302

[008] [L] G. F. Lawler, Estimates for differences and Harnack inequality for difference operators coming from random walks with symmetric, spatially inhomogeneous, increments, Proc. London Math. Soc. (3) 63 (1991), 552-568. | Zbl 0774.39004

[009] [Me] A. B. Merkov, Second-order elliptic equations on graphs, Math. USSR-Sb. 55 (1986), 493-509. | Zbl 0657.35044

[010] [Mo1] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. | Zbl 0111.09302

[011] [Mo2] J. Moser, A Harnack inequality for parabolic differential equations, ibid. 17 (1964), 101-134.

[012] [SC1] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 1992, no. 2, 27-38. | Zbl 0769.58054

[013] [SC2] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Anal. 4 (1995), 429-467. | Zbl 0840.31006

[014] [V1] N. Varopoulos, Une généralisation du théorème de Hardy-Littlewood-Sobo- lev pour les espaces de Dirichlet, C. R. Acad. Sci. Paris Sér. I 299 (1984), 651-654. | Zbl 0566.31006

[015] [V2] N. Varopoulos, Fonctions harmoniques sur les groupes de Lie, ibid. 304 (1987), 519-521.

[016] [Z] X. Y. Zhou, Green function estimates and their applications to the intersections of symmetric random walks, Stochastic Process. Appl. 48 (1993), 31-60. | Zbl 0810.60064