We show that the norm of the random walk operator on the Cayley graph of the surface group in the standard presentation is bounded by 1/√g where g is the genus of the surface.
@article{bwmeta1.element.bwnjournal-article-cmv72i1p195bwm, author = {Andrzej \.Zuk}, title = {A remark on the norm of a random walk on surface groups}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {195-206}, zbl = {0872.60052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p195bwm} }
Żuk, Andrzej. A remark on the norm of a random walk on surface groups. Colloquium Mathematicae, Tome 72 (1997) pp. 195-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p195bwm/
[000] [1] L. Bartholdi, S. Cantat, T. Ceccherini-Silberstein and P. de la Harpe, Estimates for simple random walks on fundamental groups of surfaces, this volume, 173-193. | Zbl 0872.60051
[001] [2] P. A. Cherix and A. Valette, On spectra of simple random walks on one-relator groups, Pacific J. Math., to appear.
[002] [3] Y. Colin de Verdière, Spectres de graphes, Cours de DEA, Grenoble, 1995.
[003] [4] S. Katok, Fuchsian Groups, The University of Chicago Press, 1992.
[004] [5] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. | Zbl 0092.33503