A remark on the norm of a random walk on surface groups
Żuk, Andrzej
Colloquium Mathematicae, Tome 72 (1997), p. 195-206 / Harvested from The Polish Digital Mathematics Library

We show that the norm of the random walk operator on the Cayley graph of the surface group in the standard presentation is bounded by 1/√g where g is the genus of the surface.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210452
@article{bwmeta1.element.bwnjournal-article-cmv72i1p195bwm,
     author = {Andrzej \.Zuk},
     title = {A remark on the norm of a random walk on surface groups},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {195-206},
     zbl = {0872.60052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p195bwm}
}
Żuk, Andrzej. A remark on the norm of a random walk on surface groups. Colloquium Mathematicae, Tome 72 (1997) pp. 195-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p195bwm/

[000] [1] L. Bartholdi, S. Cantat, T. Ceccherini-Silberstein and P. de la Harpe, Estimates for simple random walks on fundamental groups of surfaces, this volume, 173-193. | Zbl 0872.60051

[001] [2] P. A. Cherix and A. Valette, On spectra of simple random walks on one-relator groups, Pacific J. Math., to appear.

[002] [3] Y. Colin de Verdière, Spectres de graphes, Cours de DEA, Grenoble, 1995.

[003] [4] S. Katok, Fuchsian Groups, The University of Chicago Press, 1992.

[004] [5] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. | Zbl 0092.33503