Estimates for simple random walks on fundamental groups of surfaces
Bartholdi, Laurent ; Cantat, Serge ; Ceccherini-Silberstein, Tullio ; de la Harpe, Pierre
Colloquium Mathematicae, Tome 72 (1997), p. 173-193 / Harvested from The Polish Digital Mathematics Library

Numerical estimates are given for the spectral radius of simple random walks on Cayley graphs. Emphasis is on the case of the fundamental group of a closed surface, for the usual system of generators.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210451
@article{bwmeta1.element.bwnjournal-article-cmv72i1p173bwm,
     author = {Laurent Bartholdi and Serge Cantat and Tullio Ceccherini-Silberstein and Pierre de la Harpe},
     title = {Estimates for simple random walks on fundamental groups of surfaces},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {173-193},
     zbl = {0872.60051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p173bwm}
}
Bartholdi, Laurent; Cantat, Serge; Ceccherini-Silberstein, Tullio; de la Harpe, Pierre. Estimates for simple random walks on fundamental groups of surfaces. Colloquium Mathematicae, Tome 72 (1997) pp. 173-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p173bwm/

[000] [Can] J. W. Cannon, The growth of the closed surface groups and compact hyperbolic Coxeter groups, circulated typescript, University of Wisconsin, 1980.

[001] [Car] D. I. Cartwright, Some examples of random walks on free products of discrete groups, Ann. Mat. Pura Appl. 151 (1988), 1-15. | Zbl 0661.60018

[002] [CaM] D. I. Cartwright and W. Młotkowski, Harmonic analysis for groups acting on triangle buildings, J. Austral. Math. Soc. Ser. A 56 (1994), 345-383. | Zbl 0808.51014

[003] [Cha] C. Champetier, Propriétés statistiques des groupes de présentation finie, Adv. in Math. 116 (1995), 197-262.

[004] [ChM] B. Chandler and W. Magnus, The History of Combinatorial Group Theory: a Case Study in the History of Ideas, Springer, 1982. | Zbl 0498.20001

[005] [ChV] P. A. Cherix and A. Valette, On spectra of simple random walks on one-relator groups, Pacific J. Math., to appear. | Zbl 0865.60059

[006] [CdV] Y. Colin de Verdière, Spectres de graphes, prépublication, Grenoble, 1995.

[007] [DoK] J. Dodziuk and L. Karp, Spectra and function theory for combinatorial Laplacians, in: Contemp. Math. 73, Amer. Math. Soc., 1988, 25-40.

[008] [FP] W. J. Floyd and S. P. Plotnick, Symmetries of planar growth functions, Invent. Math. 93 (1988), 501-543. | Zbl 0652.20052

[009] [Har] T. E. Harris, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc. 8 (1957), 937-942. | Zbl 0087.13501

[010] [Ke1] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. | Zbl 0092.33503

[011] [Ke2] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156. | Zbl 0092.26704

[012] [LyS] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, 1977.

[013] [Nag] T. Nagnibeda, An estimate from above of spectral radii of random walks on surface groups, Sbornik Seminarov POMI, A. Vershik (ed.), to appear. | Zbl 0947.60006

[014] [Pas] W. B. Paschke, Lower bound for the norm of a vertex-transitive graph, Math. Zeit. 213 (1993), 225-239. | Zbl 0798.05036

[015] [Pru] W. E. Pruitt, Eigenvalues of non-negative matrices, Ann. Math. Statist. 35 (1964), 1797-1800. | Zbl 0211.48502

[016] [Ser] C. Series, The infinite word problem and limit sets of Fuchsian groups, Ergodic Theory Dynam. Systems 1 (1981) 337-360. | Zbl 0483.30029

[017] [Sul] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential. Geom. 25 (1987), 327-351. | Zbl 0615.53029

[018] [Wag] P. Wagreich, The growth function of a discrete group, in: Lecture Notes in Math. 956, Springer, 1982, 125-144.

[019] [Woe] W. Woess, Random walks on infinite graphs and groups - a survey on selected topics, Bull. London Math. Soc. 26 (1994), 1-60. | Zbl 0830.60061

[020] [Żuk] A. Żuk, A remark on the norm of a random walk on surface groups, this volume, 195-206.