Numerical estimates are given for the spectral radius of simple random walks on Cayley graphs. Emphasis is on the case of the fundamental group of a closed surface, for the usual system of generators.
@article{bwmeta1.element.bwnjournal-article-cmv72i1p173bwm, author = {Laurent Bartholdi and Serge Cantat and Tullio Ceccherini-Silberstein and Pierre de la Harpe}, title = {Estimates for simple random walks on fundamental groups of surfaces}, journal = {Colloquium Mathematicae}, volume = {72}, year = {1997}, pages = {173-193}, zbl = {0872.60051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p173bwm} }
Bartholdi, Laurent; Cantat, Serge; Ceccherini-Silberstein, Tullio; de la Harpe, Pierre. Estimates for simple random walks on fundamental groups of surfaces. Colloquium Mathematicae, Tome 72 (1997) pp. 173-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p173bwm/
[000] [Can] J. W. Cannon, The growth of the closed surface groups and compact hyperbolic Coxeter groups, circulated typescript, University of Wisconsin, 1980.
[001] [Car] D. I. Cartwright, Some examples of random walks on free products of discrete groups, Ann. Mat. Pura Appl. 151 (1988), 1-15. | Zbl 0661.60018
[002] [CaM] D. I. Cartwright and W. Młotkowski, Harmonic analysis for groups acting on triangle buildings, J. Austral. Math. Soc. Ser. A 56 (1994), 345-383. | Zbl 0808.51014
[003] [Cha] C. Champetier, Propriétés statistiques des groupes de présentation finie, Adv. in Math. 116 (1995), 197-262.
[004] [ChM] B. Chandler and W. Magnus, The History of Combinatorial Group Theory: a Case Study in the History of Ideas, Springer, 1982. | Zbl 0498.20001
[005] [ChV] P. A. Cherix and A. Valette, On spectra of simple random walks on one-relator groups, Pacific J. Math., to appear. | Zbl 0865.60059
[006] [CdV] Y. Colin de Verdière, Spectres de graphes, prépublication, Grenoble, 1995.
[007] [DoK] J. Dodziuk and L. Karp, Spectra and function theory for combinatorial Laplacians, in: Contemp. Math. 73, Amer. Math. Soc., 1988, 25-40.
[008] [FP] W. J. Floyd and S. P. Plotnick, Symmetries of planar growth functions, Invent. Math. 93 (1988), 501-543. | Zbl 0652.20052
[009] [Har] T. E. Harris, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc. 8 (1957), 937-942. | Zbl 0087.13501
[010] [Ke1] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. | Zbl 0092.33503
[011] [Ke2] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156. | Zbl 0092.26704
[012] [LyS] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, 1977.
[013] [Nag] T. Nagnibeda, An estimate from above of spectral radii of random walks on surface groups, Sbornik Seminarov POMI, A. Vershik (ed.), to appear. | Zbl 0947.60006
[014] [Pas] W. B. Paschke, Lower bound for the norm of a vertex-transitive graph, Math. Zeit. 213 (1993), 225-239. | Zbl 0798.05036
[015] [Pru] W. E. Pruitt, Eigenvalues of non-negative matrices, Ann. Math. Statist. 35 (1964), 1797-1800. | Zbl 0211.48502
[016] [Ser] C. Series, The infinite word problem and limit sets of Fuchsian groups, Ergodic Theory Dynam. Systems 1 (1981) 337-360. | Zbl 0483.30029
[017] [Sul] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential. Geom. 25 (1987), 327-351. | Zbl 0615.53029
[018] [Wag] P. Wagreich, The growth function of a discrete group, in: Lecture Notes in Math. 956, Springer, 1982, 125-144.
[019] [Woe] W. Woess, Random walks on infinite graphs and groups - a survey on selected topics, Bull. London Math. Soc. 26 (1994), 1-60. | Zbl 0830.60061
[020] [Żuk] A. Żuk, A remark on the norm of a random walk on surface groups, this volume, 195-206.