Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures
Maslowski, B. ; Simão, I.
Colloquium Mathematicae, Tome 72 (1997), p. 147-171 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210450
@article{bwmeta1.element.bwnjournal-article-cmv72i1p147bwm,
     author = {B. Maslowski and I. Sim\~ao},
     title = {Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {147-171},
     zbl = {0925.60065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p147bwm}
}
Maslowski, B.; Simão, I. Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures. Colloquium Mathematicae, Tome 72 (1997) pp. 147-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p147bwm/

[000] [1] L. Arnold, R. F. Curtain and P. Kotelenez, Nonlinear stochastic evolution equations in Hilbert space, Report no. 17, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen 1980.

[001] [2] A. Chojnowska-Michalik and B. Gołdys, Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces, Probab. Theory Related Fields 102 (1995), 331-356.

[002] [3] G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation, preprint Scuola Normale Superiore Pisa no. 5/1994.

[003] [4] G. Da Prato, D. Elworthy and J. Zabczyk, Strong Feller property for stochastic semilinear equations, Stochastic Anal. Appl. 13 (1993), 35-45. | Zbl 0817.60081

[004] [5] G. Da Prato and D. Gątarek, Stochastic Burgers equation with correlated noise, Stochastics Stochastics Rep. 52 (1995), 29-41. | Zbl 0853.35138

[005] [6] G. Da Prato, D. Gątarek and J. Zabczyk, Invariant measures for semilinear stochastic equations, Stochastic Anal. Appl. 10 (1992), 387-408. | Zbl 0758.60057

[006] [7] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. | Zbl 0761.60052

[007] [8] G. Da Prato and J. Zabczyk, Non-explosion, boundedness and ergodicity for stochastic semilinear equations, J. Differential Equations 98 (1992), 181-195. | Zbl 0762.60052

[008] [9] F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys. 171 (1995), 119-141. | Zbl 0845.35080

[009] [10] A. Friedman, Stochastic Differential Equations and Applications, Vol. I, Academic Press, New York, 1975. | Zbl 0323.60056

[010] [11] M. Fuhrman, Densities of Gaussian measures and regularity of non-symmetric Ornstein-Uhlenbeck semigroups in Hilbert spaces, IMPAN, Warszawa, Preprint 528 (1994).

[011] [12] D. Fujiwara, Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. Ser. A Math. Sci. 43 (1967), 82-86. | Zbl 0154.16201

[012] [13] D. Gątarek and B. Gołdys, On solving stochastic equation by the change of drift with application to optimal control, in: Stochastic PDE's and Applications, Proceedings, Pitman, 1992, 180-190. | Zbl 0797.60047

[013] [14] D. Gątarek and B. Gołdys, On invariant measures for diffusions on Banach spaces, Potential Anal., to appear. | Zbl 0894.60057

[014] [15] B. Gołdys, On some regularity properties of solutions to stochastic evolution equations in Hilbert spaces, Colloq. Math. 58 (1990), 327-338. | Zbl 0704.60059

[015] [16] S. Jacquot and G. Royer, Ergodicity of stochastic plates, Probab. Theory Related Fields, submitted. | Zbl 0822.60053

[016] [17] S. Jacquot and G. Royer, Ergodicité d'une classe d'équations aux dérivées partielles stochastiques, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 231-236.

[017] [18] G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199-211. | Zbl 0234.60032

[018] [19] R. Z. Khas'minskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solutions to the Cauchy problem for parabolic equations, Theory Probab. Appl. 5 (1960), 179-196.

[019] [20] P. Kotelenez, A maximal inequality for stochastic convolution integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations, Stochastics 21 (1987), 345-358. | Zbl 0622.60065

[020] [21] A. Lasota, Statistical stability of deterministic systems, in: Proceedings Würzburg 1982, Lecture Notes in Math. 1017, Springer, Berlin, 1983, 386-419. | Zbl 0532.47027

[021] [22] A. Lasota and M. C. Mackey, Chaos, fractals, and noise, Springer, New York, 1994. | Zbl 0784.58005

[022] [23] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. | Zbl 0524.28021

[023] [24] G. Leha and G. Ritter, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stochastics Stochastics Rep. 48 (1994), 195-225. | Zbl 0828.60063

[024] [25] R. Manthey and B. Maslowski, Qualitative behaviour of solutions of stochastic reaction-diffusion equations, Stochastic Process. Appl. 43 (1992), 265-289. | Zbl 0761.60055

[025] [26] B. Maslowski, On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics Stochastics Rep. 45 (1993), 17-44. | Zbl 0792.60058

[026] [27] B. Maslowski, An application of l-condition in the theory of stochastic differential equations, Časopis Pěst. Mat. 112 (1987), 296-307. | Zbl 0645.60063

[027] [28] B. Maslowski, Strong Feller property for semilinear stochastic evolution equations and applications, in: Proc. Jabłonna 1988, Lecture Notes in Control and Inform. Sci. 136, Springer, Berlin, 1989, 210-225.

[028] [29] B. Maslowski and J. Seidler, Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math. 31 (1994), 965-1003. | Zbl 0820.60040

[029] [30] S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab. 23 (1995), 157-172. | Zbl 0831.60083

[030] [31] J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Math. Bohem. 118 (1993), 67-106. | Zbl 0785.35115

[031] [32] J. Seidler, Ergodic behaviour of stochastic parabolic equations, Czechoslovak Math. J., to appear. | Zbl 0935.60041

[032] [33] I. Simão, Regular transition densities for infinite dimensional diffusions, Stochastic Anal. Appl. 11 (1993), 309-336. | Zbl 0777.60076

[033] [34] I. Simão, A conditioned Ornstein-Uhlenbeck process on a Hilbert space, ibid. 9 (1991), 85-98. | Zbl 0722.60052

[034] [35] I. Simão, Pinned Ornstein-Uhlenbeck processes on an infinite dimensional space, Preprint CMAF, University of Lisbon, 1995. | Zbl 0945.60079