On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras
Pogorzały, Zygmunt
Colloquium Mathematicae, Tome 72 (1997), p. 123-146 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:210449
@article{bwmeta1.element.bwnjournal-article-cmv72i1p123bwm,
     author = {Zygmunt Pogorza\l y},
     title = {On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras},
     journal = {Colloquium Mathematicae},
     volume = {72},
     year = {1997},
     pages = {123-146},
     zbl = {0878.16008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p123bwm}
}
Pogorzały, Zygmunt. On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras. Colloquium Mathematicae, Tome 72 (1997) pp. 123-146. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv72i1p123bwm/

[000] [1] I. Assem and A. Skowroński, On tame repetitive algebras, Fund. Math. 142 (1993), 59-84. | Zbl 0833.16010

[001] [2] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. | Zbl 0617.16017

[002] [3] M. Auslander and I. Reiten, Representation theory of artin algebras III, Comm. Algebra 3 (1975), 239-294.

[003] [4] M. Auslander and I. Reiten, Representation theory of artin algebras VI, ibid. 6 (1978), 257-300.

[004] [5] K. Bongartz, Tilted algebras, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 26-38. | Zbl 0478.16025

[005] [6] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337. | Zbl 0628.16019

[006] [7] G. d'Este and C. M. Ringel, Coherent tubes, J. Algebra 87 (1984), 150-201.

[007] [8] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, Berlin, 1980, 1-71.

[008] [9] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, Berlin, 1981, 68-105.

[009] [10] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Lecture Notes in Math. 1177, Springer, Berlin, 1986, 156-180.

[010] [11] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. | Zbl 0503.16024

[011] [12] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. | Zbl 0488.16021

[012] [13] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. | Zbl 0677.16008

[013] [14] L. Peng and J. Xiao, Invariability of repetitive algebras of tilted algebras under stable equivalence, J. Algebra 170 (1994), 54-68. | Zbl 0824.16014

[014] [15] Z. Pogorzały, Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras, preprint, Toruń, 1994. | Zbl 0824.16012

[015] [16] Z. Pogorzały and A. Skowroński, Symmetric algebras stably equivalent to the trivial extensions of tubular algebras, J. Algebra 181 (1996), 95-111. | Zbl 0867.16005

[016] [17] C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham Symposium 1985, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, 1986, 7-79.

[017] [18] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.

[018] [19] A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76. | Zbl 0634.16013

[019] [20] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165. | Zbl 0616.16012

[020] [21] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316. | Zbl 0609.16016