Spectra for Gelfand pairs associated with the Heisenberg group
Benson, Chal ; Jenkins, Joe ; Ratcliff, Gail ; Worku, Tefera
Colloquium Mathematicae, Tome 70 (1996), p. 305-328 / Harvested from The Polish Digital Mathematics Library

Let K be a closed Lie subgroup of the unitary group U(n) acting by automorphisms on the (2n+1)-dimensional Heisenberg group Hn. We say that (K,Hn) is a Gelfand pair when the set LK1(Hn) of integrable K-invariant functions on Hn is an abelian convolution algebra. In this case, the Gelfand space (or spectrum) for LK1(Hn) can be identified with the set Δ(K,Hn) of bounded K-spherical functions on Hn. In this paper, we study the natural topology on Δ(K,Hn) given by uniform convergence on compact subsets in Hn. We show that Δ(K,Hn) is a complete metric space and that the ’type 1’ K-spherical functions are dense in Δ(K,Hn). Our main result shows that one can embed Δ(K,Hn) quite explicitly in a Euclidean space by mapping a spherical function to its eigenvalues with respect to a certain finite set of (KHn)-invariant differential operators on Hn. This viewpoint on the spectrum for Δ(K,Hn) was previously known for K=U(n) and is referred to as ’the Heisenberg fan’.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210444
@article{bwmeta1.element.bwnjournal-article-cmv71i2p305bwm,
     author = {Chal Benson and Joe Jenkins and Gail Ratcliff and Tefera Worku},
     title = {Spectra for Gelfand pairs associated with the Heisenberg group},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {305-328},
     zbl = {0876.22011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p305bwm}
}
Benson, Chal; Jenkins, Joe; Ratcliff, Gail; Worku, Tefera. Spectra for Gelfand pairs associated with the Heisenberg group. Colloquium Mathematicae, Tome 70 (1996) pp. 305-328. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p305bwm/

[000] [1] C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85-116. | Zbl 0704.22006

[001] [2] C. Benson, J. Jenkins and G. Ratcliff, Bounded K-spherical functions on Heisenberg groups, J. Funct. Anal. 105 (1992), 409-443. | Zbl 0763.22007

[002] [3] C. Benson and G. Ratcliff, A classification for multiplicity free actions, J. Algebra 181 (1996), 152-186. | Zbl 0869.14021

[003] [4] P. Bougerol, Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup. 14 (1981), 403-432. | Zbl 0488.60013

[004] [5] G. Carcano, A commutativity condition for algebras of invariant functions, Boll. Un. Mat. Ital. Ser. B (7) (1987), 1091-1105. | Zbl 0632.22005

[005] [6] J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 305-317. | Zbl 0100.32303

[006] [7] J. Faraut, Analyse harmonique et fonctions spéciales, in: J. Faraut et K. Harzallah, Deux courses d'analyse harmonique, Progr. Math. 69, Birkhäuser, Boston, 1987, 1-151.

[007] [8] G. Folland, Harmonic Analysis in Phase Space, Ann. Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989. | Zbl 0682.43001

[008] [9] R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer, New York, 1988. | Zbl 0675.43004

[009] [10] R. Godement, A theory of spherical functions I, Trans. Amer. Math. Soc. 73 (1962), 496-556. | Zbl 0049.20103

[010] [11] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.

[011] [12] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem and multiplicity-free actions, Math. Ann. 290 (1991), 565-619. | Zbl 0733.20019

[012] [13] A. Hulanicki and F. Ricci, A tauberian theorem and tangential convergence of bounded harmonic functions on balls in n, Invent. Math. 62 (1980), 325-331. | Zbl 0449.31008

[013] [14] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213. | Zbl 0431.17007

[014] [15] M. Naimark, Normed Rings, Noordhoff, Groningen, 1964.

[015] [16] A. l. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer, New York, 1990.

[016] [17] R. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), 350-406. | Zbl 0734.43004

[017] [18] E. G. F. Thomas, An infinitesimal characterization of Gelfand pairs, in: Proc. Conf. in Modern Analysis and Probability in honor of Shizuo Kakutani, New Haven, Conn., 1982, Contemp. Math. 26, Amer. Math. Soc., Providence, R.I., 1984, 379-385.

[018] [19] Z. Yan, Special functions associated with multiplicity-free representations, preprint.