Steinitz classes of a nonabelian extension of degree p3
Carter, James
Colloquium Mathematicae, Tome 70 (1996), p. 297-303 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210443
@article{bwmeta1.element.bwnjournal-article-cmv71i2p297bwm,
     author = {James Carter},
     title = {Steinitz classes of a nonabelian extension of degree $p^3$
            },
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {297-303},
     zbl = {0871.11074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p297bwm}
}
Carter, James. Steinitz classes of a nonabelian extension of degree $p^3$
            . Colloquium Mathematicae, Tome 70 (1996) pp. 297-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p297bwm/

[000] [A] E. Artin, Questions de base minimale dans la théorie des nombres algébriques, in: Colloq. Internat. CNRS 24, Paris, 1950, 19-20. | Zbl 0039.02904

[001] [FT] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, 1991.

[002] [H] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer, 1981.

[003] [J] G. J. Janusz, Algebraic Number Fields, Academic Press, 1973. | Zbl 0307.12001

[004] [L] S. Lang, Algebraic Number Theory, Springer, 1986. | Zbl 0601.12001

[005] [L1] R. L. Long, Steinitz classes of cyclic extensions of prime degree, J. Reine Angew. Math. 250 (1971), 87-98. | Zbl 0229.12008

[006] [L2] R. L. Long, Steinitz classes of cyclic extensions of degree lr, Proc. Amer. Math. Soc. 49 (1975), 297-304. | Zbl 0312.12002