Characterizations of complex space forms by means of geodesic spheres and tubes
Gillard, J.
Colloquium Mathematicae, Tome 70 (1996), p. 253-262 / Harvested from The Polish Digital Mathematics Library

We prove that a connected complex space form (Mn,g,J) with n ≥ 4 can be characterized by the Ricci-semi-symmetry condition R˜XY·ϱ˜=0 and by the semi-parallel condition R˜XY·σ=0, considering special choices of tangent vectors X,Y to small geodesic spheres or geodesic tubes (that is, tubes about geodesics), where R˜, ϱ˜ and σ denote the Riemann curvature tensor, the corresponding Ricci tensor of type (0,2) and the second fundamental form of the spheres or tubes and where R˜XY acts as a derivation.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210439
@article{bwmeta1.element.bwnjournal-article-cmv71i2p253bwm,
     author = {Gillard, J.},
     title = {Characterizations of complex space forms by means of geodesic spheres and tubes},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {253-262},
     zbl = {0867.53054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p253bwm}
}
Gillard, J. Characterizations of complex space forms by means of geodesic spheres and tubes. Colloquium Mathematicae, Tome 70 (1996) pp. 253-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p253bwm/

[000] [1] E. Boeckx, J. Gillard and L. Vanhecke, Semi-symmetric and semi-parallel geodesic spheres and tubes, Indian J. Pure Appl. Math., to appear. | Zbl 0866.53037

[001] [2] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67.

[002] [3] M. Djorić and L. Vanhecke, Almost Hermitian geometry, geodesic spheres and symmetries, Math. J. Okayama Univ. 32 (1990), 187-206. | Zbl 0735.53049

[003] [4] L. Gheysens and L. Vanhecke, Total scalar curvature of tubes about curves, Math. Nachr. 103 (1981), 177-197. | Zbl 0505.53017

[004] [5] A. Gray, Tubes, Addison-Wesley, Reading, 1989.

[005] [6] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198. | Zbl 0428.53017

[006] [7] A. Gray and L. Vanhecke, The volumes of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. 44 (1982), 215-243. | Zbl 0491.53035

[007] [8] S. Tanno, Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep. 25 (1973), 190-201. | Zbl 0263.53019

[008] [9] L. Vanhecke, Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73-176.

[009] [10] L. Vanhecke and T. J. Willmore, Interaction of tubes and spheres, Math. Ann. 263 (1983), 31-42. | Zbl 0491.53034

[010] [11] K. Yano and M. Kon, Structures on Manifolds, Ser. in Pure Math. 3, World Sci., Singapore, 1984.