We prove that a connected complex space form (,g,J) with n ≥ 4 can be characterized by the Ricci-semi-symmetry condition and by the semi-parallel condition , considering special choices of tangent vectors to small geodesic spheres or geodesic tubes (that is, tubes about geodesics), where , and denote the Riemann curvature tensor, the corresponding Ricci tensor of type (0,2) and the second fundamental form of the spheres or tubes and where acts as a derivation.
@article{bwmeta1.element.bwnjournal-article-cmv71i2p253bwm, author = {Gillard, J.}, title = {Characterizations of complex space forms by means of geodesic spheres and tubes}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {253-262}, zbl = {0867.53054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p253bwm} }
Gillard, J. Characterizations of complex space forms by means of geodesic spheres and tubes. Colloquium Mathematicae, Tome 70 (1996) pp. 253-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p253bwm/
[000] [1] E. Boeckx, J. Gillard and L. Vanhecke, Semi-symmetric and semi-parallel geodesic spheres and tubes, Indian J. Pure Appl. Math., to appear. | Zbl 0866.53037
[001] [2] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67.
[002] [3] M. Djorić and L. Vanhecke, Almost Hermitian geometry, geodesic spheres and symmetries, Math. J. Okayama Univ. 32 (1990), 187-206. | Zbl 0735.53049
[003] [4] L. Gheysens and L. Vanhecke, Total scalar curvature of tubes about curves, Math. Nachr. 103 (1981), 177-197. | Zbl 0505.53017
[004] [5] A. Gray, Tubes, Addison-Wesley, Reading, 1989.
[005] [6] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198. | Zbl 0428.53017
[006] [7] A. Gray and L. Vanhecke, The volumes of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. 44 (1982), 215-243. | Zbl 0491.53035
[007] [8] S. Tanno, Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep. 25 (1973), 190-201. | Zbl 0263.53019
[008] [9] L. Vanhecke, Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73-176.
[009] [10] L. Vanhecke and T. J. Willmore, Interaction of tubes and spheres, Math. Ann. 263 (1983), 31-42. | Zbl 0491.53034
[010] [11] K. Yano and M. Kon, Structures on Manifolds, Ser. in Pure Math. 3, World Sci., Singapore, 1984.