Quasi-tilted algebras of canonical type
Lenzing, Helmut ; Skowroński, Andrzej
Colloquium Mathematicae, Tome 70 (1996), p. 161-181 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210433
@article{bwmeta1.element.bwnjournal-article-cmv71i2p161bwm,
     author = {Helmut Lenzing and Andrzej Skowro\'nski},
     title = {Quasi-tilted algebras of canonical type},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {161-181},
     zbl = {0870.16007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p161bwm}
}
Lenzing, Helmut; Skowroński, Andrzej. Quasi-tilted algebras of canonical type. Colloquium Mathematicae, Tome 70 (1996) pp. 161-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i2p161bwm/

[000] [1] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. | Zbl 0617.16017

[001] [2] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452. | Zbl 0084.17305

[002] [3] F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc., to appear.

[003] [4] F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82. | Zbl 0848.16012

[004] [5] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297. | Zbl 0651.14006

[005] [6] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343.

[006] [7] D. Happel, Triangulated Categories and the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge University Press, Cambridge, 1988.

[007] [8] D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011

[008] [9] D. Happel and C. M. Ringel, Tilted agebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.

[009] [10] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. | Zbl 0675.16013

[010] [11] O. Kerner, Stable components of wild tilted algebras, J. Algebra 142 (1991), 37-57. | Zbl 0737.16007

[011] [12] H. Lenzing, Wild canonical algebras and rings of automorphic forms, in: V. Dlab and L. L. Scott (eds.), Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C 424, Springer, 1994, 191-212. | Zbl 0895.16004

[012] [13] H. Lenzing, Hereditary noetherian categories with a tilting complex, preprint, 1994.

[013] [14] H. Lenzing, A K-theoretic study of canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 433-454. | Zbl 0859.16009

[014] [15] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in Representations of Algebras, Sixth International Conference, Ottawa 1992, CMS Conf. Proc. 14, 1993, 313-337. | Zbl 0809.16012

[015] [16] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 455-473. | Zbl 0863.16013

[016] [17] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., to appear.

[017] [18] H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, preprint, 1995.

[018] [19] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416. | Zbl 0818.16015

[019] [20] H. Meltzer, Auslander-Reiten components for concealed-canonical algebras, this issue, 183-202. | Zbl 0923.16016

[020] [21] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[021] [22] A. Skowroński, Tame quasi-tilted algebras, preprint, 1996. | Zbl 0908.16013

[022] [23] A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 641-657. | Zbl 0865.16013

[023] [24] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. | Zbl 0746.16009