A symmetric, idempotent, continuous binary operation on a space is called a mean. In this paper, we provide a criterion for the non-existence of mean on a certain class of continua which includes tree-like continua. This generalizes a result of Bell and Watson. We also prove that any hereditarily indecomposable circle-like continuum admits no mean.
@article{bwmeta1.element.bwnjournal-article-cmv71i1p97bwm, author = {K. Kawamura and E. Tymchatyn}, title = {Continua which admit no mean}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {97-105}, zbl = {0859.54022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p97bwm} }
Kawamura, K.; Tymchatyn, E. Continua which admit no mean. Colloquium Mathematicae, Tome 70 (1996) pp. 97-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p97bwm/
[000] [Ba] P. Bacon, An acyclic continuum that admits no mean, Fund. Math. 67 (1970), 11-13. | Zbl 0192.60101
[001] [BeW] M. Bell and S. Watson, Not all dendroids have means, preprint. | Zbl 0860.54031
[002] [Bi1] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742. | Zbl 0035.39103
[003] [Bi2] R. H. Bing, Snake-like continua, ibid. 18 (1951), 653-663. | Zbl 0043.16804
[004] [C] D. W. Curtis, A hyperspace retraction theorem for a class of half-line compactifications, Topology Proc. 11 (1986), 29-64. | Zbl 0638.54010
[005] [L] W. Lewis, Observations of the pseudo-arcs, ibid. 9 (1984), 329-337. | Zbl 0577.54038
[006] [M] J. Mioduszewski, On a quasi-ordering in the class of continuous mappings of a closed interval, Colloq. Math. 9 (1962), 233-240. | Zbl 0107.27603
[007] [O] L. G. Oversteegen, On products of confluent and weakly confluent mappings related to span, Houston J. Math. 12 (1986), 109-116. | Zbl 0638.54030
[008] [S] K. Sigmon, Acyclicity of compact means, Michigan Math. J. 16 (1969), 111-115. | Zbl 0179.51404