Pełczyński's Property (V) on spaces of vector-valued functions
Randrianantoanina, Narcisse
Colloquium Mathematicae, Tome 70 (1996), p. 63-78 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210428
@article{bwmeta1.element.bwnjournal-article-cmv71i1p63bwm,
     author = {Narcisse Randrianantoanina},
     title = {Pe\l czy\'nski's Property (V) on spaces of vector-valued functions},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {63-78},
     zbl = {0878.46029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p63bwm}
}
Randrianantoanina, Narcisse. Pełczyński's Property (V) on spaces of vector-valued functions. Colloquium Mathematicae, Tome 70 (1996) pp. 63-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p63bwm/

[000] [1] F. Bombal, On l1 subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc. 101 (1987), 107-112. | Zbl 0634.46019

[001] [2] F. Bombal, On (V*) sets and Pełczynski’s property (V*), Glasgow Math. J. 32 (1990), 109-120. | Zbl 0693.46013

[002] [3] J. Bourgain, H is a Grothendieck space, Studia Math. 75 (1983), 193-216. | Zbl 0533.46035

[003] [4] J. Bourgain, On weak compactness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1983), 111-118. | Zbl 0521.46016

[004] [5] P. Cembranos, N. J. Kalton, E. Saab and P. Saab, Pełczyński's property (V) on C(𝜴, E) spaces, Math. Ann. 271 (1985), 91-97. | Zbl 0546.46029

[005] [6] D. L. Cohn, Measure Theory, Birkhäuser, 1980.

[006] [7] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294. | Zbl 0361.46048

[007] [8] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.

[008] [9] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.

[009] [10] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.

[010] [11] G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1990), 307-318. | Zbl 0676.46006

[011] [12] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting, Ergeb. Math. Grenzgeb. 48, Springer, Berlin, 1969. | Zbl 0179.46303

[012] [13] S. V. Kisliakov, Uncomplemented uniform algebras, Mat. Zametki 18 (1975), 91-96 (in Russian).

[013] [14] J. Munkres, Topology. A First Course, Prentice-Hall, Englewood Cliffs, N.J. 1975.

[014] [15] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648. | Zbl 0107.32504

[015] [16] H. Pfitzner, Weak compactness in the dual of a C*-algebra is determined commutatively, Math. Ann. 298 (1994), 349-371. | Zbl 0791.46035

[016] [17] N. Randrianantoanina, Complemented copies of l1 and Pełczyński’s property (V*) in Bochner spaces, Canad. J. Math., to appear. | Zbl 0858.46029

[017] [18] H. P. Rosenthal, A characterization of Banach spaces containing c0, J. Amer. Math. Soc. 7 (1994), 707-747. | Zbl 0824.46010

[018] [19] W. Ruess, Duality and geometry of spaces of compact operators, in: North-Holland Math. Stud. 90, North-Holland, 1984, 59-78. | Zbl 0573.46007

[019] [20] E. Saab and P. Saab, Stability problems in Banach spaces, in: Lecture Notes in Pure and Appl. Math. 136, Dekker, 1992, 367-394. | Zbl 0787.46022

[020] [21] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.

[021] [22] M. Talagrand, Weak Cauchy sequences in L1(E), Amer. J. Math. 106 (1984), 703-724. | Zbl 0579.46025

[022] [23] A. Ulger, Weak compactness in L1(μ,X), Proc. Amer. Math. Soc. 113 (1991), 143-149.