For a σ-ideal I of sets in a Polish space X and for A ⊆ , we consider the generalized projection (A) of A given by (A) = x ∈ X: Ax ∉ I, where =y ∈ X: 〈x,y〉∈ A. We study the behaviour of with respect to Borel and analytic sets in the case when I is a -supported σ-ideal. In particular, we give an alternative proof of the recent result of Kechris showing that [ for a wide class of -supported σ-ideals.
@article{bwmeta1.element.bwnjournal-article-cmv71i1p47bwm, author = {Marek Balcerzak}, title = {Generalized projections of Borel and analytic sets}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {47-53}, zbl = {0864.54030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p47bwm} }
Balcerzak, Marek. Generalized projections of Borel and analytic sets. Colloquium Mathematicae, Tome 70 (1996) pp. 47-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p47bwm/
[000] [B] M. Balcerzak, Can ideals without ccc be interesting? Topology Appl. 55 (1994), 251-260. | Zbl 0795.54052
[001] [BR] M. Balcerzak and A. Rosłanowski, On Mycielski ideals, Proc. Amer. Math. Soc. 110 (1990), 243-250. | Zbl 0708.04002
[002] [G] M. Gavalec, Iterated products of ideals of Borel sets, Colloq. Math. 50 (1985), 39-52. | Zbl 0604.28001
[003] [Ke] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1994.
[004] [KLW] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. | Zbl 0633.03043
[005] [KS] A. S. Kechris and S. Solecki, Approximation of analytic by Borel sets and definable chain conditions, Israel J. Math. 89 (1995), 343-356. | Zbl 0827.54023
[006] [Ku] K. Kuratowski, Topology, Vols. 1, 2, PWN and Academic Press, Warszawa and New York, 1966, 1968.
[007] [Mo] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
[008] [My] J. Mycielski, Some new ideals of sets on the real line, Colloq. Math. 20 (1969), 71-76. | Zbl 0203.05701
[009] [P] Gy. Petruska, On Borel sets with small covers: a problem of M. Laczkovich, Real Anal. Exchange 18 (1992-93), 330-338. | Zbl 0783.28001
[010] [R] A. Rosłanowski, Mycielski ideals generated by uncountable systems, Colloq. Math. 66 (1994), 187-200. | Zbl 0833.04002
[011] [Sh] R. M. Shortt, Product sigma-ideals, Topology Appl. 23 (1986), 279-290. | Zbl 0594.28002
[012] [So] S. Solecki, Covering analytic sets by families of closed sets, J. Symbolic Logic 59 (1994), 1022-1031. | Zbl 0808.03031