On the central limit theorem for random variables related to the continued fraction expansion
Faivre, C.
Colloquium Mathematicae, Tome 70 (1996), p. 153-159 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210421
@article{bwmeta1.element.bwnjournal-article-cmv71i1p153bwm,
     author = {C. Faivre},
     title = {On the central limit theorem for random variables related to the continued fraction expansion},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {153-159},
     zbl = {0857.11038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p153bwm}
}
Faivre, C. On the central limit theorem for random variables related to the continued fraction expansion. Colloquium Mathematicae, Tome 70 (1996) pp. 153-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p153bwm/

[000] [1] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indag. Math. 45 (1983), 281-299. | Zbl 0519.10043

[001] [2] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. | Zbl 0141.16702

[002] [3] A. Ibragimov, Some limit theorems for stationary processes, Theor. Probab. Appl. 7 (1962), 349-382. | Zbl 0119.14204

[003] [4] H. Ishitani, A central limit theorem of mixed type for a class of 1- dimensional transformations, Hiroshima Math. J. 16 (1986), 161-188.

[004] [5] H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399-426. | Zbl 0479.10029

[005] [6] W. Philipp, Some metrical theorems in number theory II, Duke Math. J. 37 (1970), 447-458.