@article{bwmeta1.element.bwnjournal-article-cmv71i1p137bwm, author = {Ben Nasr, Fathi}, title = {Calculs de dimensions de packing}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {137-148}, zbl = {0856.28003}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p137bwm} }
Ben Nasr, Fathi. Calculs de dimensions de packing. Colloquium Mathematicae, Tome 70 (1996) pp. 137-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p137bwm/
[000] [1] T. Bedford, Hausdorff dimension and box dimension in self-similar sets, Proc. Conf. Topology and Measure V (Binz, 1987), Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1988, 17-26. | Zbl 0743.54020
[001] [2] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. | Zbl 0141.16702
[002] [3] G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775-790. | Zbl 0892.28006
[003] [4] B. Mandelbrot, Multifractal measures, especially for the geophysicist, in: Fractals in Geophysics, Birkhäuser, Basel, 1989, 5-42.
[004] [5] B. Mandelbrot, A class of multinomial multifractal measures with negative latent value for the dimension , Fractals’ Physical Origin and Properties (Erice, 1988), L. Pietro- nero (ed.), Plenum, New York, 1989, 3-29.
[005] [6] B. Mandelbrot, Two meanings of multifractality, and the notion of negative fractal dimension, in: Soviet-American Chaos Meeting (Woods Hole, 1989), K. Ford and D. Campbell (eds.), Amer. Inst. Phys., 1990, 79-90.
[006] [7] B. Mandelbrot, Limit lognormal multifractal measures, in: Frontiers of Physics: Landau Memorial Conference (Tel Aviv, 1988), E. Gotsman (ed.), Pergamon, New York, 1989, 91-122.
[007] [8] B. Mandelbrot, New ’anomalous’ multiplicative multifractals: left sided and the modeling of DLA, Phys. A 168 (1990), 95-111.
[008] [9] B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Exactly self-similar 'left-sided' multifractal measures, Phys. Rev. A, to appear. | Zbl 0850.28004
[009] [10] L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82-196. | Zbl 0841.28012
[010] [11] J. Peyrière, Multifractal measures, in: Probabilistic and Stochastic Methods in Analysis, with Applications (Il Ciocco, 1991), J. Byrnes (ed.), Kluwer Acad. Publ., 1992, 175-186.
[011] [12] C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Thèse, Faculté des Sciences de l'Université de Genève, 1980.
[012] [13] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. | Zbl 0483.28010