Calculs de dimensions de packing
Ben Nasr, Fathi
Colloquium Mathematicae, Tome 70 (1996), p. 137-148 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210419
@article{bwmeta1.element.bwnjournal-article-cmv71i1p137bwm,
     author = {Ben Nasr, Fathi},
     title = {Calculs de dimensions de packing},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {137-148},
     zbl = {0856.28003},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p137bwm}
}
Ben Nasr, Fathi. Calculs de dimensions de packing. Colloquium Mathematicae, Tome 70 (1996) pp. 137-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p137bwm/

[000] [1] T. Bedford, Hausdorff dimension and box dimension in self-similar sets, Proc. Conf. Topology and Measure V (Binz, 1987), Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1988, 17-26. | Zbl 0743.54020

[001] [2] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. | Zbl 0141.16702

[002] [3] G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775-790. | Zbl 0892.28006

[003] [4] B. Mandelbrot, Multifractal measures, especially for the geophysicist, in: Fractals in Geophysics, Birkhäuser, Basel, 1989, 5-42.

[004] [5] B. Mandelbrot, A class of multinomial multifractal measures with negative (latent) value for the dimension f(α), Fractals’ Physical Origin and Properties (Erice, 1988), L. Pietro- nero (ed.), Plenum, New York, 1989, 3-29.

[005] [6] B. Mandelbrot, Two meanings of multifractality, and the notion of negative fractal dimension, in: Soviet-American Chaos Meeting (Woods Hole, 1989), K. Ford and D. Campbell (eds.), Amer. Inst. Phys., 1990, 79-90.

[006] [7] B. Mandelbrot, Limit lognormal multifractal measures, in: Frontiers of Physics: Landau Memorial Conference (Tel Aviv, 1988), E. Gotsman (ed.), Pergamon, New York, 1989, 91-122.

[007] [8] B. Mandelbrot, New ’anomalous’ multiplicative multifractals: left sided f(α) and the modeling of DLA, Phys. A 168 (1990), 95-111.

[008] [9] B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Exactly self-similar 'left-sided' multifractal measures, Phys. Rev. A, to appear. | Zbl 0850.28004

[009] [10] L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82-196. | Zbl 0841.28012

[010] [11] J. Peyrière, Multifractal measures, in: Probabilistic and Stochastic Methods in Analysis, with Applications (Il Ciocco, 1991), J. Byrnes (ed.), Kluwer Acad. Publ., 1992, 175-186.

[011] [12] C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Thèse, Faculté des Sciences de l'Université de Genève, 1980.

[012] [13] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. | Zbl 0483.28010