A note on the diophantine equation (x2-1)(y2-1)=(z2-1)2
Wu, Huaming ; Le, Maohua
Colloquium Mathematicae, Tome 70 (1996), p. 133-136 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210418
@article{bwmeta1.element.bwnjournal-article-cmv71i1p133bwm,
     author = {Huaming Wu and Maohua Le},
     title = {A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$
            },
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {133-136},
     zbl = {0857.11009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p133bwm}
}
Wu, Huaming; Le, Maohua. A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$
            . Colloquium Mathematicae, Tome 70 (1996) pp. 133-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p133bwm/

[000] [1] Z.-F. Cao, A generalization of the Schinzel-Sierpiński system of equations, J. Harbin Inst. Tech. 23 (5) (1991), 9-14 (in Chinese). | Zbl 0971.11503

[001] [2] A. Grelak, On the diophantine equation (x2-1)(y2-1)=(z2-1)2, Discuss. Math. 5 (1982), 41-43. | Zbl 0507.10009

[002] [3] A. Schinzel and W. Sierpiński, Sur l’équation diophantienne (x2-1)(y2-1)=[((y-x)/2)2-1]2, Elem. Math. 18 (1963), 132-133. | Zbl 0126.07301

[003] [4] Y.-B. Wang, On the diophantine equation (x2-1)(y2-1)=(z2-1)2, Heilongjiang Daxue Ziran Kexue Xuebao 1989, (4), 84-85 (in Chinese).