On the Moment Map of a Multiplicity Free Action
Daszkiewicz, Andrzej ; Przebinda, Tomasz
Colloquium Mathematicae, Tome 70 (1996), p. 107-110 / Harvested from The Polish Digital Mathematics Library

The purpose of this note is to show that the Orbit Conjecture of C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff [BJLR1] is true. Another proof of that fact has been given by those authors in [BJLR2]. Their proof is based on their earlier results, announced together with the conjecture in [BJLR1]. We follow another path: using a geometric quantization result of Guillemin-Sternberg [G-S] we reduce the conjecture to a similar statement for a projective space, which is a special case of a characterization of projective smooth spherical varieties due to Brion [B2].

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210415
@article{bwmeta1.element.bwnjournal-article-cmv71i1p107bwm,
     author = {Andrzej Daszkiewicz and Tomasz Przebinda},
     title = {On the Moment Map of a Multiplicity Free Action},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {107-110},
     zbl = {0854.22013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p107bwm}
}
Daszkiewicz, Andrzej; Przebinda, Tomasz. On the Moment Map of a Multiplicity Free Action. Colloquium Mathematicae, Tome 70 (1996) pp. 107-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv71i1p107bwm/

[000] [BJLR1] C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff, The moment map for a multiplicity-free action, Bull. Amer. Math. Soc. 31 (1994), 185-190. | Zbl 0829.22014

[001] [BJLR2] C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff, A geometric criterion for Gelfand pairs associated with the Heisenberg group, Pacific J. Math., to appear. | Zbl 0868.22015

[002] [B1] M. Brion, Spherical Varieties: An Introduction, in: Topological Methods in Algebraic Transformation Groups, H. Kraft, T. Petrie and G. Schwarz (eds.), Progr. Math. 80, Birkhäuser, Boston, 1989, 11-26.

[003] [B2] M. Brion, Sur l'image de l'application moment, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, M.-P. Mallavin (ed.), Lecture Notes in Math. 1296, Springer, Berlin, 1987, 177-192.

[004] [G-S] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538. | Zbl 0503.58018

[005] [O-V] A. L. Onishchik and E. B. Vinberg (eds.), Lie Groups and Lie Algebras III, Springer, Berlin, 1994.

[006] [Se] F. J. Servedio, Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc. 176 (1973), 421-444. | Zbl 0266.20043