Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
Strzelecki, Paweł
Colloquium Mathematicae, Tome 70 (1996), p. 271-289 / Harvested from The Polish Digital Mathematics Library

We prove that minimizers uW1,n of the functional E(u)=1/n|u|ndx+1/(4n)(1-|u|2)2dx, ⊂ n, n ≥ 3, which satisfy the Dirichlet boundary condition u=g on for g: → Sn-1 with zero topological degree, converge in W1,n and Clocα for any α<1 - upon passing to a subsequence k0 - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210412
@article{bwmeta1.element.bwnjournal-article-cmv70i2p271bwm,
     author = {Pawe\l\ Strzelecki},
     title = {Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {271-289},
     zbl = {0856.35015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p271bwm}
}
Strzelecki, Paweł. Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions. Colloquium Mathematicae, Tome 70 (1996) pp. 271-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p271bwm/

[000] [1] F. Bethuel, H. Brezis et F. Hélein, Limite singulière pour la minimisation de fonctionnelles du type Ginzburg-Landau, C. R. Acad. Sci. Paris 314 (1992) 891-895. | Zbl 0773.49003

[001] [2] F. Bethuel, H. Brezis et F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations and PDE 1 (1993), 123-148. | Zbl 0834.35014

[002] [3] F. Bethuel, H. Brezis et F. Hélein, Tourbillons de Ginzburg-Landau et energie renormalisée, C. R. Acad. Sci. Paris 317 (1993), 165-171.

[003] [4] F. Bethuel, H. Brezis et F. Hélein, Ginzburg-Landau Vortices, Progr. Nonlinear Differential Equations Appl. 13, Birkhäuser, Boston, 1994.

[004] [5] F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60-75. | Zbl 0657.46027

[005] [6] B. Bojarski and T. Iwaniec, p-harmonic equation and quasiregular mappings, in: Banach Center Publ. 19, PWN, Warszawa, 1987, 25-38.

[006] [7] E. DiBenedetto and A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 349 (1984), 83-128. | Zbl 0527.35038

[007] [8] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983.

[008] [9] Z. Han and Y. Li, Degenerate elliptic systems and applications to Ginzburg-Landau type equations, I, preprint, Rutgers University, 1995.

[009] [10] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystals theory, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985-1986), Pitman Res. Notes Math. Ser. 181, Longman Sci. Tech., 1988, 276-289.

[010] [11] R. Hardt, D. Kinderlehrer and F. H. Lin, The variety of configurations of static liquid crystals, in: H. Berestycki, J.-M. Coron, and I. Ekeland (eds.), Variational Methods, Birkhäuser, 1990, 115-131. | Zbl 0723.58018

[011] [12] M. C. Hong, Asymptotic behavior for minimizers of a Ginzburg-Landau functional in higher dimensions associated with n-harmonic maps, preprint, 1995.

[012] [13] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. | Zbl 0372.35030