Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields
Moulin Ollagnier, Jean
Colloquium Mathematicae, Tome 70 (1996), p. 195-217 / Harvested from The Polish Digital Mathematics Library

Given a 3-dimensional vector field V with coordinates Vx, Vy and Vz that are homogeneous polynomials in the ring k[x,y,z], we give a necessary and sufficient condition for the existence of a Liouvillian first integral of V which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in the ring k[x,y,z] enjoying precise properties; in particular, they have to be integrable in the sense of Pfaff and orthogonal to the vector field V. Thus, our theorem links the existence of an object that belongs to some level of an extension tower with the existence of objects defined by means of the base differential ring k[x,y,z]. A self-contained proof of this result is given in the language of differential algebra. This method of finding first integrals in a given class of functions is an extension of the compatibility method introduced by J.-M. Strelcyn and S. Wojciechowski; and an old method of Darboux is a special case of it. We discuss all these relations and argue for the practical interest of our characterization despite an old open algorithmic problem.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210406
@article{bwmeta1.element.bwnjournal-article-cmv70i2p195bwm,
     author = {Jean Moulin Ollagnier},
     title = {Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {195-217},
     zbl = {0851.35096},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p195bwm}
}
Moulin Ollagnier, Jean. Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields. Colloquium Mathematicae, Tome 70 (1996) pp. 195-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p195bwm/

[000] [1] C. Camacho and A. Lins Neto, The topology of integrable differentiable forms near a singularity, Publ. Math. IHES 55 (1982), 5-36. | Zbl 0505.58026

[001] [2] H. Cartan, Formes différentielles, Hermann, Paris, 1967.

[002] [3] D. Cerveau, Equations différentielles algébriques: remarques et problèmes, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 665-680. | Zbl 0698.58047

[003] [4] D. Cerveau et F. Maghous, Feuilletages algébriques de Cn, C. R. Acad. Sci. Paris 303 (1986), 643-645.

[004] [5] D. Cerveau et J. F. Mattei, Formes intégrables holomorphes singulières, Astérisque 97 (1982). | Zbl 0545.32006

[005] [6] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sci. Math. 2 (1878), 60-96, 123-144, 151-200. | Zbl 10.0214.01

[006] [7] B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J.-M. Strelcyn and S. Wojciechowski, Integrals of quadratic ordinary differential equations in 3: the Lotka-Volterra system, Phys. A 163 (1990), 683-722. | Zbl 0714.34005

[007] [8] J.-P. Jouanolou, Equations de Pfaff algébriques, Lecture Notes in Math. 708, Springer, Berlin, 1979.

[008] [9] J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, On the non-existence of constants of derivations: the proof of a theorem of Jouanolou's and its development, Bull. Sci. Math. 119 (1995), 195-233. | Zbl 0855.34010

[009] [10] J. Moulin Ollagnier and J.-M. Strelcyn, On first integrals of linear systems, Frobenius integrability theorem and linear representations of Lie algebras, in: Bifurcations of Planar Vector Fields, Proceedings, Luminy 1989, J.-P. Françoise and R. Roussarie (eds.), Lecture Notes in Math. 1455, Springer, Berlin, 1991. | Zbl 0714.34002

[010] [11] H. Poincaré, Sur l'intégration algébrique des équations différentielles, C. R. Acad. Sci. Paris 112 (1891), 761-764; reprinted in Œ uvres, tome III, Gauthier-Villars, Paris, 1965, 32-34. | Zbl 23.0319.01

[011] [12] H. Poincaré, Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 5 (1891), 161-191; reprinted in Œ uvres, tome III, Gauthier-Villars, Paris, 1965, 35-58. | Zbl 23.0319.01

[012] [13] H. Poincaré, Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 11 (1897), 193-239; reprinted in Œ uvres, tome III, Gauthier-Villars, Paris, 1965, 59-94. | Zbl 28.0292.01

[013] [14] M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1983), 215-229. | Zbl 0527.12016

[014] [15] R. H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc. 139 (1969), 167-189. | Zbl 0184.06702

[015] [16] M. Rosenlicht, On Liouville's theory of elementary functions, Pacific J. Math. 65 (1976), 485-492. | Zbl 0318.12107

[016] [17] M. F. Singer, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), 673-688. | Zbl 0756.12006

[017] [18] J.-M. Strelcyn and S. Wojciechowski, A method of finding integrals of 3-dimensional dynamical systems, Phys. Lett. A 133 (1988), 207-212.