A new proof of a theorem of Balcerzyk, Białynicki-Birula and Łoś
O'Neill, John
Colloquium Mathematicae, Tome 70 (1996), p. 191-194 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210405
@article{bwmeta1.element.bwnjournal-article-cmv70i2p191bwm,
     author = {John O'Neill},
     title = {A new proof of a theorem of Balcerzyk, Bia\l ynicki-Birula and \L o\'s},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {191-194},
     zbl = {0865.20041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p191bwm}
}
O'Neill, John. A new proof of a theorem of Balcerzyk, Białynicki-Birula and Łoś. Colloquium Mathematicae, Tome 70 (1996) pp. 191-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p191bwm/

[000] [1] S. Balcerzyk, A. Białynicki-Birula and J. Łoś, On direct decompositions of complete direct sums of groups of rank 1, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 451-454. | Zbl 0112.02202

[001] [2] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973. | Zbl 0257.20035

[002] [3] R. J. Nunke, On direct products of infinite cyclic groups, Proc. Amer. Math. Soc. 13 (1962), 66-71. | Zbl 0103.01605

[003] [4] J. D. O'Neill, A theorem on direct products of slender modules, Rend. Sem. Mat. Univ. Padova 78 (1987), 261-266. | Zbl 0641.16029

[004] [5] J. D. O’Neill, Direct summands of κ for large κ, in: Abelian Groups and Related Topics, R. Göbel, P. Hill and W. Liebert (eds.), Contemp. Math. 171, Amer. Math. Soc., 1994, 313-323.