The concept of a strongly chaotic space is introduced, and its relations to chaotic, rigid and strongly rigid spaces are studied. Some sufficient as well as necessary conditions are shown for a dendrite to be strongly chaotic.
@article{bwmeta1.element.bwnjournal-article-cmv70i2p181bwm, author = {J. Charatonik and W. Charatonik}, title = {Strongly chaotic dendrites}, journal = {Colloquium Mathematicae}, volume = {70}, year = {1996}, pages = {181-190}, zbl = {0860.54030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p181bwm} }
Charatonik, J.; Charatonik, W. Strongly chaotic dendrites. Colloquium Mathematicae, Tome 70 (1996) pp. 181-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i2p181bwm/
[000] [1] J. J. Charatonik, On chaotic curves, Colloq. Math. 41 (1979), 219-236. | Zbl 0447.54047
[001] [2] J. J. Charatonik, Open mappings of universal dendrites, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 489-494. | Zbl 0469.54019
[002] [3] J. J. Charatonik, Monotone mappings of universal dendrites, Topology Appl. 38 (1991), 163-187. | Zbl 0726.54012
[003] [4] J. J. Charatonik, On chaotic dendrites, preprint.
[004] [5] K. Kuratowski, Topology, Vol. 2, Academic Press and PWN, 1968.
[005] [6] K. Menger, Kurventheorie, Teubner, 1932.
[006] [7] T. Ważewski, Sur les courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan, Ann. Soc. Polon. Math. 2 (1923), 49-170. | Zbl 50.0373.02