The duality correspondence of infinitesimal characters
Przebinda, Tomasz
Colloquium Mathematicae, Tome 70 (1996), p. 93-102 / Harvested from The Polish Digital Mathematics Library

We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:210401
@article{bwmeta1.element.bwnjournal-article-cmv70i1p93bwm,
     author = {Tomasz Przebinda},
     title = {The duality correspondence of infinitesimal characters},
     journal = {Colloquium Mathematicae},
     volume = {70},
     year = {1996},
     pages = {93-102},
     zbl = {0854.22017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p93bwm}
}
Przebinda, Tomasz. The duality correspondence of infinitesimal characters. Colloquium Mathematicae, Tome 70 (1996) pp. 93-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv70i1p93bwm/

[000] [1] J. D. Adams, Discrete spectrum of the reductive dual pair (O(p,q), Sp(2m)), Invent. Math. 74 (1983), 449-475. | Zbl 0561.22011

[001] [2] J. D. Adams, Unitary highest weight modules, preprint. | Zbl 0623.22014

[002] [3] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris, 1968.

[003] [4] T. Y. Enright, R. Howe and N. R. Wallach, A classification of unitary highest weight modules, in: Representation Theory of Reductive Groups, P. C. Trombi (ed.), Birkhäuser, Boston, 1983, 97-143. | Zbl 0535.22012

[004] [5] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.

[005] [6] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570. | Zbl 0674.15021

[006] [7] R. Howe, Transcending the classical invariant theory, J. Amer. Math. Soc. 74 (1989), 449-475. | Zbl 0716.22006

[007] [8] R. Howe, θ-series and invariant theory, in: Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, R.I., 1979, 275-285.

[008] [9] R. Howe, manuscript in preparation on dual pairs.

[009] [10] R. Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, in: Lectures in Appl. Math. 21, Amer. Math. Soc., Providence, R.I., 1985, 179-207. | Zbl 0558.22018

[010] [11] R. Howe, On a notion of rank for unitary representations of the classical groups, in: Harmonic Analysis and Group Representations, Liguori, Napoli, 1982, 223-331.

[011] [12] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Berlin, 1972. | Zbl 0254.17004

[012] [13] N. Jacobson, Basic Algebra I, W. H. Freeman, 1974.

[013] [14] N. Jacobson, Basic Algebra II, W. H. Freeman, 1980.

[014] [15] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44 (1978), 1-97. | Zbl 0375.22009

[015] [16] A. Knapp, Representation Theory of Semisimple Groups - an Overview Based on Examples, Princeton University Press, Princeton, N.J., 1986. | Zbl 0604.22001

[016] [17] A. Knapp and D. Vogan, Jr., Duality theorems in the relative Lie algebra cohomology, preprint.

[017] [18] R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1-24. | Zbl 0434.22011

[018] [19] D. Vogan, Jr., Representation Theory of Real Reductive Lie Groups, Birkhäuser, Boston, 1981.

[019] [20] D. Vogan, Classifying representations by lowest K-types, in: Lectures in Appl. Math. 21, Amer. Math. Soc., 1985, 179-207.

[020] [21] H. Weyl, The Classical Groups, Princeton University Press, Princeton, N.J., 1946. | Zbl 1024.20502